scispace - formally typeset
Search or ask a question
Topic

Yeast

About: Yeast is a research topic. Over the lifetime, 31777 publications have been published within this topic receiving 868967 citations. The topic is also known as: yeasts.


Papers
More filters
Journal ArticleDOI
TL;DR: The advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories are reviewed and metabolic engineering strategies for developing yeast strains for production of polymer monomers are presented.
Abstract: Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production.

240 citations

Journal ArticleDOI
TL;DR: Comp comparative information on the different steps of the fundamental pathways of sugar utilization in non-conventional yeasts: glycolysis, fermentation, tricarboxylic acid cycle, pentose phosphate pathway and respiration is provided.
Abstract: Sugars are excellent carbon sources for all yeasts. Since a vast amount of information is available on the components of the pathways of sugar utilization in Saccharomyces cerevisiae it has been tacitly assumed that other yeasts use sugars in the same way. However, although the pathways of sugar utilization follow the same theme in all yeasts, important biochemical and genetic variations on it exist. Basically, in most non-conventional yeasts, in contrast to S. cerevisiae, respiration in the presence of oxygen is prominent for the use of sugars. This review provides comparative information on the different steps of the fundamental pathways of sugar utilization in non-conventional yeasts: glycolysis, fermentation, tricarboxylic acid cycle, pentose phosphate pathway and respiration. We consider also gluconeogenesis and, briefly, catabolite repression. We have centered our attention in the genera Kluyveromyces, Candida, Pichia, Yarrowia and Schizosaccharomyces, although occasional reference to other genera is made. The review shows that basic knowledge is missing on many components of these pathways and also that studies on regulation of critical steps are scarce. Information on these points would be important to generate genetically engineered yeast strains for certain industrial uses.

240 citations

Journal ArticleDOI
TL;DR: The results reveal the logic of cellular metabolism during different phases of the life of a yeast cell and indicate that oscillation in the abundance of key metabolites might help control the temporal regulation of cellular processes and the establishment of a cycle.
Abstract: Budding yeast undergo robust oscillations in oxygen consumption during continuous growth in a nutrient-limited environment. Using liquid chromatography-mass spectrometry and comprehensive 2D gas chromatography-mass spectrometry-based metabolite profiling methods, we have determined that the intracellular concentrations of many metabolites change periodically as a function of these metabolic cycles. These results reveal the logic of cellular metabolism during different phases of the life of a yeast cell. They may further indicate that oscillation in the abundance of key metabolites might help control the temporal regulation of cellular processes and the establishment of a cycle. Such oscillations in metabolic state might occur during the course of other biological cycles.

240 citations

Journal ArticleDOI
TL;DR: Investigation of the effect of ammonium supplementation of a synthetic medium over a wide range of nitrogen values on the production of volatile and non-volatile compounds by two high-nitrogen-demand wine fermentation strains of Saccharomyces cerevisiae found that it had significant effects on the concentration of residual sugar, L-malic acid, acetic acid and glycerol but not the ethanol concentration.
Abstract: Surveys conducted worldwide have shown that a significant proportion of grape musts are suboptimal for yeast nutrients, especially assimilable nitrogen. Nitrogen deficiencies are linked to slow and stuck fermentations and sulphidic off-flavour formation. Nitrogen supplementation of grape musts has become common practice; however, almost no information is available on the effects of nitrogen supplementation on wine flavour. In this study, the effect of ammonium supplementation of a synthetic medium over a wide range of nitrogen values on the production of volatile and non-volatile compounds by two high-nitrogen-demand wine fermentation strains of Saccharomyces cerevisiae was determined. To facilitate this investigation, a simplified chemically defined medium that resembles the nutrient composition of grape juice was used. Analysis of variance revealed that ammonium supplementation had significant effects on the concentration of residual sugar, L-malic acid, acetic acid and glycerol but not the ethanol concentration. While choice of yeast strain significantly affected half of the aroma compounds measured, nitrogen concentrations affected 23 compounds, including medium-chain alcohols and fatty acids and their esters. Principal component analysis showed that branched-chain fatty acids and their esters were associated with low nitrogen concentrations, whereas medium-chain fatty esters and acetic acid were associated with high nitrogen concentrations.

240 citations

Journal ArticleDOI
TL;DR: Although strains KU1 and M522 have a similar nitrogen consumption profile, they represent useful models for the chemical characterization of wine strains in relation to wine quality and will help to develop targeted metabolic footprinting methods for the discrimination of industrial yeasts.
Abstract: The contribution of yeast fermentation metabolites to the aromatic profile of wine is well documented; however, the biotechnological application of this knowledge, apart from strain selection, is still rather limited and often contradictory. Understanding and modeling the relationship between nutrient availability and the production of desirable aroma compounds by different strains must be one of the main objectives in the selection of industrial yeasts for the beverage and food industry. In order to overcome the variability in the composition of grape juices, we have used a chemically defined model medium for studying yeast physiological behavior and metabolite production in response to nitrogen supplementation so as to identify an appropriate yeast assimilable nitrogen level for strain differentiation. At low initial nitrogen concentrations, strain KU1 produced higher quantities of esters and fatty acids whereas M522 produced higher concentrations of isoacids, γ-butyrolactone, higher alcohols and 3-methylthio-1-propanol. We propose that although strains KU1 and M522 have a similar nitrogen consumption profile, they represent useful models for the chemical characterization of wine strains in relation to wine quality. The differential production of aroma compounds by the two strains is discussed in relation to their capacity for nitrogen usage and their impact on winemaking. The results obtained here will help to develop targeted metabolic footprinting methods for the discrimination of industrial yeasts.

239 citations


Network Information
Related Topics (5)
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
95% related
Escherichia coli
59K papers, 2M citations
90% related
Fermentation
68.8K papers, 1.2M citations
89% related
Amino acid
124.9K papers, 4M citations
87% related
Mutant
74.5K papers, 3.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,445
20223,214
2021816
2020870
2019977
2018968