scispace - formally typeset
Search or ask a question
Topic

Zeatin

About: Zeatin is a research topic. Over the lifetime, 2467 publications have been published within this topic receiving 64092 citations. The topic is also known as: Zeatin & (E/Z)-zeatin.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that both ABA and cytokinins are involved in controlling plant senescence, and an enhanced carbon remobilization and accelerated grain filling rate are attributed to an elevated ABA level in wheat plants when subjected to water stress.
Abstract: This study investigated the possibility that abscisic acid (ABA) and cytokinins may mediate the effect of water deficit that enhances plant senescence and remobilization of pre-stored carbon reserves. Two high lodging-resistant wheat (Triticum aestivum L.) cultivars were field grown and treated with either a normal or high amount of nitrogen at heading. Well-watered (WW) and water-stressed (WS) treatments were imposed from 9 d post-anthesis until maturity. Chlorophyll (Chl) and photosynthetic rate (Pr) of the flag leaves declined faster in WS plants than in WW plants, indicating that the water deficit enhanced senescence. Water stress facilitated the reduction of non-structural carbohydrate in the stems and promoted the re-allocation of prefixed 14C from the stems to grains, shortened the grain filling period and increased the grain filling rate. Water stress substantially increased ABA but reduced zeatin (Z) + zeatin riboside (ZR) concentrations in the stems and leaves. ABA correlated significantly and negatively, whereas Z + ZR correlated positively, with Pr and Chl of the flag leaves. ABA but not Z + ZR, was positively and significantly correlated with remobilization of pre-stored carbon and grain filling rate. Exogenous ABA reduced Chl in the flag leaves, enhanced the remobilization, and increased grain filling rate. Spraying with kinetin had the opposite effect. The results suggest that both ABA and cytokinins are involved in controlling plant senescence, and an enhanced carbon remobilization and accelerated grain filling rate are attributed to an elevated ABA level in wheat plants when subjected to water stress.

215 citations

Journal ArticleDOI
TL;DR: AtPUP1 is expressed in all organs except roots, indicating that the gene encodes an uptake system for root-derived nucleic Acid base derivatives in shoots or that it exports nucleic acid base analogs from shoots by way of the phloem.
Abstract: In many organisms, including plants, nucleic acid bases and derivatives such as caffeine are transported across the plasma membrane. Cytokinins, important hormones structurally related to adenine, are produced mainly in root apices, from where they are translocated to shoots to control a multitude of physiological processes. Complementation of a yeast mutant deficient in adenine uptake (fcy2) with an Arabidopsis cDNA expression library enabled the identification of a gene, AtPUP1 (for Arabidopsis thaliana purine permease1), belonging to a large gene family (AtPUP1 to AtPUP15) encoding a new class of small, integral membrane proteins. AtPUP1 transports adenine and cytosine with high affinity. Uptake is energy dependent, occurs against a concentration gradient, and is sensitive to protonophores, potentially indicating secondary active transport. Competition studies show that purine derivatives (e.g., hypoxanthine), phytohormones (e.g., zeatin and kinetin), and alkaloids (e.g., caffeine) are potent inhibitors of adenine and cytosine uptake. Inhibition by cytokinins is competitive (competitive inhibition constant K(i) = 20 to 35 microM), indicating that cytokinins are transported by this system. AtPUP1 is expressed in all organs except roots, indicating that the gene encodes an uptake system for root-derived nucleic acid base derivatives in shoots or that it exports nucleic acid base analogs from shoots by way of the phloem. The other family members may have different affinities for nucleic acid bases, perhaps functioning as transporters for nucleosides, nucleotides, and their derivatives.

212 citations

Journal ArticleDOI
TL;DR: In this paper, uniconazole-treated plants had lower endogenous GA3 and IAA contents than the controls, while zeatin and ABA contents and ethylene levels were significantly increased.
Abstract: Winter rape (Brassica napus L cv 601) seedlings were treated with 50 mgl-1 of foliar-applied uniconazole and then exposed to freezing stress with a light/dark temperature regime of 2 °C/−3 °C for 5 days at the seedling stage Stressed plants contained lower endogenous GA3 and IAA contents than the controls, while zeatin and ABA contents and ethylene levels were significantly increased Uniconazole-treated plants had lower endogenous GA3 and IAA contents, and higher zeatin and ABA contents and ethylene levels Leaf chlorophyll content and respiratory capacity of roots were reduced significantly after plants were subjected to freezing stress, and foliar sprays of uniconazole retarded the degradation of chlorophyll and increased respiratory capacity of roots Uniconazole-induced freezing tolerance was accompanied by increased activities of various antioxidant enzymes, including superoxide dismutase, catalase and peroxidase Foliar applications of uniconazole reduced electrolyte leakage and malondialdehyde accumulation caused by freezing stress, suggesting that uniconazole may have decreased freezing-induced lipid peroxidation and membrane damage

204 citations

Journal ArticleDOI
TL;DR: The results strongly suggest that maize cytokinin receptors differ in ligand preference, and that cZ is an active cytokinins at least in maize.
Abstract: Genes for cytokinin-responsive His-protein kinases (ZmHK1, ZmHK2, and ZmHK3a) were isolated from maize (Zea mays). Heterologous expression of each of the ZmHKs in Escherichia coli having the ΔrcsC and cps∷lacZ genetic background conferred cytokinin-inducibility of lacZ expression on the bacteria. In the recombinant E. coli system, ZmHK1 and ZmHK3a were more sensitive to free-base cytokinins than to the corresponding nucleosides; isopentenyladenine was most effective for ZmHK1, while ZmHK2 tended to be most sensitive to trans-zeatin and the riboside. In contrast to a known cytokinin receptor of Arabidopsis (AHK4/CRE1/WOL), all ZmHKs responded to cis-zeatin (cZ), which generally is believed to be inactive or only weakly active. In cultured maize cells, expression of ZmRR1, a cytokinin-inducible response regulator, was induced by cZ as well as by trans-zeatin. These results strongly suggest that maize cytokinin receptors differ in ligand preference, and that cZ is an active cytokinin at least in maize.

201 citations

Journal ArticleDOI
TL;DR: It is shown that an ATP-binding cassette transporter in Arabidopsis, AtABCG14, is essential for the acropetal (root to shoot) translocation of the root-synthesized cytokinins.
Abstract: Cytokinins are a major group of phytohormones regulating plant growth, development and stress responses. However, in contrast to the well-defined polar transport of auxins, the molecular basis of cytokinin transport is poorly understood. Here we show that an ATP-binding cassette transporter in Arabidopsis, AtABCG14, is essential for the acropetal (root to shoot) translocation of the root-synthesized cytokinins. AtABCG14 is expressed primarily in the pericycle and stelar cells of roots. Knocking out AtABCG14 strongly impairs the translocation of trans-zeatin (tZ)-type cytokinins from roots to shoots, thereby affecting the plant's growth and development. AtABCG14 localizes to the plasma membrane of transformed cells. In planta feeding of C(14) or C(13)-labelled tZ suggests that it acts as an efflux pump and its presence in the cells directly correlates with the transport of the fed cytokinin. Therefore, AtABCG14 is a transporter likely involved in the long-distance translocation of cytokinins in planta.

200 citations


Network Information
Related Topics (5)
Abscisic acid
12.8K papers, 587K citations
88% related
Shoot
32.1K papers, 693.3K citations
86% related
Arabidopsis thaliana
19.1K papers, 1M citations
84% related
Photosynthesis
19.7K papers, 895.1K citations
83% related
Arabidopsis
30.9K papers, 2.1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202333
2022103
202135
202034
201932
201848