scispace - formally typeset
Search or ask a question
Topic

Zeatin

About: Zeatin is a research topic. Over the lifetime, 2467 publications have been published within this topic receiving 64092 citations. The topic is also known as: Zeatin & (E/Z)-zeatin.


Papers
More filters
Journal ArticleDOI
TL;DR: Mesophyll protoplasts, of sour cherry clones CAB 4D, CAB 5H and CAB 11E, gave differential cultural responses and protoplast-derived calli underwent rhizogenesis as an intermediate step towards shoot bud differentiation.

56 citations

Journal ArticleDOI
TL;DR: Temperature and gamma ray treatments of anthers enhanced callus production, shoot formation and plant regeneration, and a highly significant interaction between genotype and medium was observed.
Abstract: The influence on androgenesis of donor plant growth conditions, anther size and developmental stage of the microspore, medium composition and different anther treatments prior to culture was investigated in L. esculentum Mill. cv Roma and its hybrids. Growth conditions of donor plants affected the induction of tomato androgenesis. Anthers isolated from plants grown in the greenhouse during winter at high humidity and in short days possessed higher androgenetic ability than those grown in the field. The physiological state and age of the donor plants also influenced the processes investigated. Regarding the developmental stage of microspores, the period from prophase to telophase II is optimal for tomato anther implantation. More then 20 culture media were tested. Two, based on Murashige and Skoog medium were selected as most favourable for callus induction, organogenesis and regeneration. The effect on callus induction of 2ip in combination with indole-3-acetic acid (IAA) was greater than that of zeatin and IAA. Zeatin promoted entire plant regeneration. A highly significant interaction between genotype and medium was observed. Temperature and gamma ray treatments of anthers enhanced callus production, shoot formation and plant regeneration. Treatments at 4 °C (48 h) and 10 °C (9 days) stimulated these processes. Combined treatment of anthers with 4 Gy and 10 °C for 9 days was the most efficient.

56 citations

Journal ArticleDOI
TL;DR: It is supposed that the inhibitory effect of high concentration of nitrate on root elongation is, at least in part, mediated by increased cytokinin level in roots, and high nitrate supply may have negative influences on root apex activity by affecting cytokin in metabolism so that root apical dominance is weakened and, therefore, root elongations is suppressed and lateral roots grow closer to the root apex.
Abstract: Response of root system architecture to nutrient availability in soils is an essential way for plants to adapt to soil environments. Nitrate can affect root development either as a result of changes in the external concentration, or through changes in the internal nutrient status of the plant. Nevertheless, less is known about the physiological mechanisms. In the present study, two maize (Zea mays L.) inbred lines (478 and Wu312) were used to study a possible role of cytokinin in nitrate-mediated root growth in nutrient solutions. Root elongation of 478 was more sensitive to high nitrate supply than that of Wu312. Medium high nitrate (5 mM) inhibited root elongation in 478, while, root elongation in Wu312 was only inhibited at high NO 3 − supply (20 mM). Under high nitrate supply, the root elongation zone in 478 became swollen and the site of lateral root elongation was close towards the root tip. Both of the phenomena are typical of root growth induced by exogenous cytokinin treatments. Correspondingly, zeatin and zeatin nucleotide (Z + ZR) concentrations were increased at higher nitrate supply in 478, whereas they were constant in Wu312. Furthermore, exogenous cytokinin 6-benzylaminopurine (6-BA) completely reversed the stimulatory effect of low nitrate on root elongation. Therefore, it is supposed that the inhibitory effect of high concentration of nitrate on root elongation is, at least in part, mediated by increased cytokinin level in roots. High nitrate supply may have negative influences on root apex activity by affecting cytokinin metabolism so that root apical dominance is weakened and, therefore, root elongation is suppressed and lateral roots grow closer to the root apex. Nitrate suppressed lateral root elongation in Wu312 at concentration higher than 5 mM. In 478, however, this phenomenon was not significant even at 20 mM nitrate. Although exogenous 6-BA (20 nM) could suppress lateral root elongation as well, the inhibitory effect of high NO 3 − concentration of nitrate on lateral root growth cannot be explained by changes in endogenous cytokinin alone.

56 citations

Journal ArticleDOI
19 May 2017-Planta
TL;DR: It was concluded that pre-drought priming facilitated the wheat plants to sustain higher grain development and yield against the most yield-damaging post-anthesis drought stress by modulating the levels of growth hormones.
Abstract: Drought stress during grain filling is the most yield-damaging to wheat. Pre-drought priming facilitated the wheat plants to sustain grain development against the post-anthesis drought stress by modulating the levels of growth hormones. Post-anthesis drought stress substantially reduces grain yield in wheat (Triticum aestivum L.) due to impaired grain development associated with imbalanced levels of growth hormones. To investigate whether pre-drought priming could sustain grain development in wheat by regulating favorable levels of growth hormones under post-anthesis drought conditions, the plants of a drought-sensitive (Yangmai-16) and drought-tolerant (Luhan-7) wheat cultivar were exposed to a moderate drought stress during tillering (Feekes 2 stage) for priming, and then, a subsequent severe drought stress was applied from 7 to 14 days after anthesis. The results showed that drought-stressed plants of both cultivars showed a decline in flag leaf water potential, chlorophyll contents, photosynthetic rate, grain size initiation, and grain filling as compared to well-watered plants; however, decline in these traits was less in pre-drought primed (PD) plants than in nonprimed (ND) plants. Under drought stress, the PD plants regulated higher concentrations of zeatin and zeatin riboside, indole-3-acetic acid, gibberellins, and lower abscisic acid content in grains, resulting in higher endosperm cell division and expansion, grain size initiation, grain-filling rate and duration, and finally higher grain dry weights as compared to ND plants. The PD plants of both cultivars showed higher potential to tolerate the post-anthesis drought stress, but more effect was displayed by drought-tolerant cultivar. From the achieved results, it was concluded that pre-drought priming facilitated the wheat plants to sustain higher grain development and yield against the most yield-damaging post-anthesis drought stress by modulating the levels of growth hormones.

56 citations

Journal ArticleDOI
TL;DR: In vitro shoots of thyme were established, and the effects of the auxin indole-3-acetic (IAA) acid and the cytokinins benzyladenine (BA), zeatin (ZEA), and kinetin (KIN) at 1.0 microM on rooting, biomass production, and volatile compounds production by these plants were investigated.
Abstract: In vitro shoots of thyme (Thymus vulgaris L) were established, and the effects of the auxin indole-3-acetic (IAA) acid and the cytokinins benzyladenine (BA), zeatin (ZEA), and kinetin (KIN) at 10, 50, and 100 microM on rooting, biomass production, and volatile compounds production by these plants were investigated The volatiles were extracted by solid phase microextraction (SPME) and analyzed by gas chromatography The highest biomass shoot growth was obtained with BA at 50 microM, while IAA at all concentrations tested achieved 100% rooting frequency The three major compounds were gamma-terpinene (228-388%), p-cymene (138-279%), and thymol (65-290%) Quantitative changes of these compounds were observed in response to the effect of varying growth regulators concentrations in the culture medium Growing Thymus vulgaris L plants in media supplemented with IAA at 10 microM increased volatile compounds such as thymol by 315% Nevertheless, the same major compounds were produced in all treatments and no qualitative changes were observed in the volatile profile of thyme plants

55 citations


Network Information
Related Topics (5)
Abscisic acid
12.8K papers, 587K citations
88% related
Shoot
32.1K papers, 693.3K citations
86% related
Arabidopsis thaliana
19.1K papers, 1M citations
84% related
Photosynthesis
19.7K papers, 895.1K citations
83% related
Arabidopsis
30.9K papers, 2.1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202333
2022103
202135
202034
201932
201848