scispace - formally typeset
Search or ask a question
Topic

Zero field splitting

About: Zero field splitting is a research topic. Over the lifetime, 5371 publications have been published within this topic receiving 126178 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The light-induced excited spin state trapping (LIESST) as mentioned in this paper phenomenon is well understood within the theoretical context of radiationless transitions and applications of the LIESST effect in optical information technology can be envisaged.
Abstract: Transition metal chemistry contains a class of complex compounds for which the spin state of the central atom changes from high spin to low spin when the temperature is lowered. This is accompanied by changes of the magnetic and optical properties that make the thermally induced spin transition (also called spin crossover) easy to follow. The phenomenon is found in the solid state as well as in solution. Amongst this class, iron(II) spin crossover compounds are distinguished for their great variety of spin transition behavior; it can be anything from gradual to abrupt, stepwise, or with hysteresis effects. Many examples have been thoroughly studied by Mossbauer and optical spectroscopy, measurements of the magnetic susceptibilities and the heat capacities, as well as crystal structure analysis. Cooperative interactions between the complex molecules can be satisfactorily explained from changes in the elastic properties during the spin transition, that is, from changes in molecular structure and volume. Our investigations of iron(II) spin crossover compounds have shown that green light will switch the low spin state to the high spin state, which then can have a virtually unlimited lifetime at low temperatures (this phenomenom is termed light-induced excited spin state trapping - acronym: LIESST). Red light will switch the metastable high spin state back to the low spin state. We have elucidated the mechanism of the LIESST effect and studied the deactivation kinetics in detail. It is now well understood within the theoretical context of radiationless transitions. Applications of the LIESST effect in optical information technology can be envisaged.

1,796 citations

Journal ArticleDOI
TL;DR: In this paper, a few more concepts that are important to the study of electron spin resonance have been introduced, but which are not encountered in the field of nuclear magnetic resonance, such as the quenching of orbital angular momentum and the magnetic coupling of the nuclear spin to that of the electron.
Abstract: So far we have confined our attention to nuclear magnetic resonance, although many of the basic principles apply to electron spin resonance. We have also considered questions concerning the electrons, such as the quenching of orbital angular momentum and the magnetic coupling of the nuclear spin to that of the electron. In this chapter we shall add a few more concepts that are important to the study of electron spin resonance1 but which are not encountered in the study of nuclear resonance.

1,726 citations

Journal ArticleDOI
TL;DR: It is argued that in a high-mobility two-dimensional electron system with substantial Rashba spin-orbit coupling, a spin current that flows perpendicular to the charge current is intrinsic, and the intrinsic spin-Hall conductivity has a universal value for zero quasiparticle spectral broadening.
Abstract: We describe a new effect in semiconductor spintronics that leads to dissipationless spin currents in paramagnetic spin-orbit coupled systems. We argue that in a high-mobility two-dimensional electron system with substantial Rashba spin-orbit coupling, a spin current that flows perpendicular to the charge current is intrinsic. In the usual case where both spin-orbit split bands are occupied, the intrinsic spin-Hall conductivity has a universal value for zero quasiparticle spectral broadening.

1,639 citations

Journal ArticleDOI
TL;DR: In this article, the electron spin resonance hyperfine splitting constants of spin adducts of interest in this area are tabulated and a brief comment on the source of the radical trapped is given.

1,487 citations

Journal ArticleDOI
TL;DR: Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS${}_{2}$, MoSe${}-2}, WS${} -2}, and WSe${] -2] as mentioned in this paper.
Abstract: Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS${}_{2}$, MoSe${}_{2}$, WS${}_{2}$, and WSe${}_{2}$. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148--456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

1,374 citations


Network Information
Related Topics (5)
Ab initio
57.3K papers, 1.6M citations
91% related
Band gap
86.8K papers, 2.2M citations
90% related
Magnetization
107.8K papers, 1.9M citations
89% related
Excited state
102.2K papers, 2.2M citations
89% related
Electron
111.1K papers, 2.1M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239
202221
202122
202019
201931
201839