scispace - formally typeset
Search or ask a question
Topic

Zinc toxicity

About: Zinc toxicity is a research topic. Over the lifetime, 727 publications have been published within this topic receiving 34583 citations. The topic is also known as: zinc poisoning.


Papers
More filters
Journal ArticleDOI
TL;DR: The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC, and the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'.
Abstract: The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'.

1,658 citations

Journal ArticleDOI
TL;DR: A multidisciplinary approach will most likely result in success in the pharmacology of zinc compounds as a promising area for translational research, and the current assumed range between safe and unsafe intakes of zinc is relatively narrow.

920 citations

01 Jan 2004
TL;DR: This chapter discusses dietary sources of zinc and factors affecting the proportion of zinc available for absorption in the diet, as well as causes of zinc deficiency and groups at high risk.
Abstract: Chapter 1: Overview of Zinc Nutrition S99 1.1 Biological functions of zinc S99 1.2 Tissue zinc distribution and reserves S99 1.3 Zinc metabolism S100 1.4 Importance of zinc for human health S101 1.5 Human zinc requirements S105 1.5.1 Adult men S106 1.5.2 Adult women S109 1.5.3 Children S110 1.5.4 Pregnancy S111 1.5.5 Lactation S112 1.6 Dietary sources of zinc and suggested revisions of Recommended Daily Intakes S112 1.6.1 Dietary sources of zinc and factors affecting the proportion of zinc available for absorption ........ S112 1.6.2 Revised estimates of dietary requirements and recommended intakes for zinc S114 1.7 Zinc toxicity S118 1.8 Causes of zinc deficiency and groups at high risk S121 1.9 Summary S123

768 citations

Journal ArticleDOI
TL;DR: It is proposed that ZnT‐1 transports zinc out of cells and that its absence accounts for the increased sensitivity of mutant cells to zinc toxicity.
Abstract: A cDNA encoding a zinc transporter (ZnT-1) was isolated from a rat kidney cDNA expression library by complementation of a mutated, zinc-sensitive BHK cell line. This cDNA was used to isolate the homologous mouse ZnT-1 gene. The proteins predicted for these transporters contain six membrane-spanning domains, a large intracellular loop and a C-terminal tail. ZnT-1 is homologous to zinc and cobalt resistance genes of yeast. Immunocytochemistry with an antibody to a myc epitope added to the C-terminus of ZnT-1 revealed localization to the plasma membrane. Transformation of normal cells with a mutant ZnT-1 lacking the first membrane-spanning domain conferred zinc sensitivity on wild-type cells, suggesting that ZnT-1 functions as a multimer. Deletion of the first two membrane-spanning domains resulted in a non-functional molecule, whereas deletion of the C-terminal tail produced a toxic phenotype. Mutant cells have a slightly higher steady-state level of intracellular zinc and high basal expression of a zinc-dependent reporter gene compared with normal cells. Mutant cells have a lower turnover of 65Zn compared with normal cells or mutant cells transformed with ZnT-1. We propose that ZnT-1 transports zinc out of cells and that its absence accounts for the increased sensitivity of mutant cells to zinc toxicity.

739 citations

Journal ArticleDOI
TL;DR: The different molecular mechanisms of nutritional (Zn) and non-nutritional (Cd) metal homeostasis between metal-sensitive and metal-adapted species are compared to provide a comprehensive overview on how plants cope with Zn/Cd stress at the molecular level.
Abstract: When plants are subjected to high metal exposure, different plant species take different strategies in response to metal-induced stress. Largely, plants can be distinguished in four groups: metal-sensitive species, metal-resistant excluder species, metal-tolerant non-hyperaccumulator species, and metal-hypertolerant hyperaccumulator species, each having different molecular mechanisms to accomplish their resistance/tolerance to metal stress or reduce the negative consequences of metal toxicity. Plant responses to heavy metals are molecularly regulated in a process called metal homeostasis, which also includes regulation of the metal-induced reactive oxygen species (ROS) signaling pathway. ROS generation and signaling plays an important duel role in heavy metal detoxification and tolerance. In this review, we will compare the different molecular mechanisms of nutritional (Zn) and non-nutritional (Cd) metal homeostasis between metal-sensitive and metal-adapted species. We will also include the role of metal-induced ROS signal transduction in this comparison, with the aim to provide a comprehensive overview on how plants cope with Zn/Cd stress at the molecular level.

532 citations


Network Information
Related Topics (5)
Superoxide dismutase
38.7K papers, 1.8M citations
75% related
Glutathione
42.5K papers, 1.8M citations
74% related
Oxidative stress
86.5K papers, 3.8M citations
73% related
Reactive oxygen species
36.6K papers, 2M citations
73% related
Lipid peroxidation
42.4K papers, 1.8M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202312
202221
202114
202021
201917
201818