scispace - formally typeset
Search or ask a question
Topic

Zinc toxicity

About: Zinc toxicity is a research topic. Over the lifetime, 727 publications have been published within this topic receiving 34583 citations. The topic is also known as: zinc poisoning.


Papers
More filters
Journal ArticleDOI
TL;DR: Current acute and chronic water quality criteria for cadmium, copper, and zinc adequately protect rainbow trout but may not adequately protect some populations of mottled sculpins, which are among the most sensitive aquatic species to toxicity of all three metals.
Abstract: Studies of fish communities of streams draining mining areas suggest that sculpins (Cottus spp.) may be more sensitive than salmonids to adverse effects of metals. We compared the toxicity of zinc, copper, and cadmium to mottled sculpin (C. bairdi) and rainbow trout (Onchorhynchus mykiss) in laboratory toxicity tests. Acute (96-h) and early life-stage chronic (21- or 28-d) toxicity tests were conducted with rainbow trout and with mottled sculpins from populations in Minnesota and Missouri, USA, in diluted well water (hardness = 100 mg/L as CaCO3). Acute and chronic toxicity of metals to newly hatched and swim-up stages of mottled sculpins differed between the two source populations. Differences between populations were greatest for copper, with chronic toxicity values (ChV = geometric mean of lowest-observed-effect concentration and no-observed-effect concentration) of 4.4 microg/L for Missouri sculpins and 37 microg/L for Minnesota sculpins. Cadmium toxicity followed a similar trend, but differences between sculpin populations were less marked, with ChVs of 1.1 microg/L (Missouri) and 1.9 microg/L (Minnesota). Conversely, zinc was more toxic to Minnesota sculpins (ChV = 75 microg/L) than Missouri sculpins (chronic ChV = 219 microg/L). Species-average acute and chronic toxicity values for mottled sculpins were similar to or lower than those for rainbow trout and indicated that mottled sculpins were among the most sensitive aquatic species to toxicity of all three metals. Our results indicate that current acute and chronic water quality criteria for cadmium, copper, and zinc adequately protect rainbow trout but may not adequately protect some populations of mottled sculpins. Proposed water quality criteria for copper based on the biotic ligand model would be protective of both sculpin populations tested.

56 citations

Journal ArticleDOI
TL;DR: Rice plants share partial genetic overlaps of Fe and Zn toxicity tolerance at seedling stage, providing valuable information for future functional characterization and improvement of rice tolerance to Fe andZn toxicity by marker-assisted selection or designed QTL pyramiding.
Abstract: Ferrous iron (Fe) and zinc (Zn) at high concentration in the soil cause heavy metal toxicity and greatly affect rice yield and quality. To improve rice production, understanding the genetic and molecular resistance mechanisms to excess Fe and Zn in rice is essential. Genome-wide association study (GWAS) is an effective way to identify loci and favorable alleles governing Fe and Zn toxicty as well as dissect the genetic relationship between them in a genetically diverse population. A total of 29 and 31 putative QTL affecting shoot height (SH), root length (RL), shoot fresh weight (SFW), shoot dry weight (SDW), root dry weight (RDW), shoot water content (SWC) and shoot ion concentrations (SFe or SZn) were identified at seedling stage in Fe and Zn experiments, respectively. Five toxicity tolerance QTL (qSdw3a, qSdw3b, qSdw12 and qSFe5 / qSZn5) were detected in the same genomic regions under the two stress conditions and 22 candidate genes for 10 important QTL regions were also determined by haplotype analyses. Rice plants share partial genetic overlaps of Fe and Zn toxicity tolerance at seedling stage. Candidate genes putatively affecting Fe and Zn toxicity tolerance identified in this study provide valuable information for future functional characterization and improvement of rice tolerance to Fe and Zn toxicity by marker-assisted selection or designed QTL pyramiding.

55 citations

Journal ArticleDOI
TL;DR: The average daily moulting rate of survivors significantly decreased after exposure to waterborne copper, cadmium, and zinc in solution, and the average daily survival rate also significantly decreased.
Abstract: Heptageniid mayfly nymphs have been suggested as sensitive indicators of metal contamination in streams based on biomonitoring studies, experimentation in situ, and experimentation in microcosm. Laboratory tests were conducted to evaluate the sensitivity of Rhithrogena hageni, a heptageniid mayfly, to waterborne copper, cadmium, and zinc. Tests were conducted with soft water (hardness = 40–50 mg/L) at about 12°C. Toxicity endpoints were survival and moulting (%/day). Median 96 hr lethal concentrations were 0.137, 10.5, and 50.5 mg/L for copper, cadmium and zinc, respectively. The average daily moulting rate of survivors significantly decreased after exposure to these metals in solution.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of excess zinc (Zn) on solution-cultured wheat (Triticum aestivum L., cv. Yecora Rojo) and radish (Raphanus sativus L.,cv. Cherry Belle) were studied, using both short-term root elongation studies and longer term split-root experiments.
Abstract: The effects of excess zinc (Zn) on solution-cultured wheat (Triticum aestivum L., cv. Yecora Rojo) and radish (Raphanus sativus L., cv. Cherry Belle) were studied, using both short-term root elongation studies and longer term split-root experiments. Alleviation of Zn rhizotoxicity by Mg and K was observed, with especially dramatic alleviation of root stunting by Mg. In the short-term studies using a simple medium (2 mM CaCl2 ,p H 6.0), Mg concentrations of 1–5 µM were able to significantly alleviate rhizotoxicity caused by Zn concentrations as high as 60 µM. In the split-root studies, 100 µM Mg was sufficient to abolish Zn toxicity in both wheat and radish. Paradoxically, Mg enhanced uptake and translocation of Zn while simultaneously alleviating toxicity in these longer-term experiments. In short-term experiments, additions of K (0 to 200 µM) to the basal medium alleviated Zn rhizotoxicity to a more limited extent. In split-root experiments, however, the absence or presence of K in test solutions did not affect plant growth or Zn uptake. When increased from a physiological minimum (e.g., 200 µM), Ca also alleviates Zn toxicity, but the effect is very modest in comparison to that of Mg. The results are discussed in relation to the use of short-term assays of metal tolerance in simple salt solutions, and in relation to possible roles of Mg in the physiology of Zn toxicity.

54 citations

Journal ArticleDOI
12 Jun 2009-PLOS ONE
TL;DR: Results indicate that covalent tyrosine dimerization of a SLC30A family member modulates its subcellular localization and zinc transport capacity and propose that dityrosine-dependent membrane protein oligomerization may regulate the function of diverse membrane protein in normal and disease states.
Abstract: Non-covalent and covalent homo-oligomerization of membrane proteins regulates their subcellular localization and function Here, we described a novel oligomerization mechanism affecting solute carrier family 30 member 3/zinc transporter 3 (SLC30A3/ZnT3) Oligomerization was mediated by intermolecular covalent dityrosine bonds Using mutagenized ZnT3 expressed in PC12 cells, we identified two critical tyrosine residues necessary for dityrosine-mediated ZnT3 oligomerization ZnT3 carrying the Y372F mutation prevented ZnT3 oligomerization, decreased ZnT3 targeting to synaptic-like microvesicles (SLMVs), and decreased resistance to zinc toxicity Strikingly, ZnT3 harboring the Y357F mutation behaved as a “gain-of-function” mutant as it displayed increased ZnT3 oligomerization, targeting to SLMVs, and increased resistance to zinc toxicity Single and double tyrosine ZnT3 mutants indicate that the predominant dimeric species is formed between tyrosine 357 and 372 ZnT3 tyrosine dimerization was detected under normal conditions and it was enhanced by oxidative stress Covalent species were also detected in other SLC30A zinc transporters localized in different subcellular compartments These results indicate that covalent tyrosine dimerization of a SLC30A family member modulates its subcellular localization and zinc transport capacity We propose that dityrosine-dependent membrane protein oligomerization may regulate the function of diverse membrane protein in normal and disease states

54 citations


Network Information
Related Topics (5)
Superoxide dismutase
38.7K papers, 1.8M citations
75% related
Glutathione
42.5K papers, 1.8M citations
74% related
Oxidative stress
86.5K papers, 3.8M citations
73% related
Reactive oxygen species
36.6K papers, 2M citations
73% related
Lipid peroxidation
42.4K papers, 1.8M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202312
202221
202114
202021
201917
201818