scispace - formally typeset
Search or ask a question
Topic

Zirconium alloy

About: Zirconium alloy is a research topic. Over the lifetime, 6548 publications have been published within this topic receiving 78954 citations. The topic is also known as: zircaloy.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the relative stabilities of the four types of precipitates studied appear to be reversed for low and high irradiation temperatures, respectively, for both electron and ion irradiations.

44 citations

Journal ArticleDOI
TL;DR: In this article, a review of the use of oxidized zirconium components for knee and hip femoral arthroplasty is presented, with a historical perspective, including standards for the Zr-2.5Nb alloy, non-medical applications for oxidized Zr materials, and previous orthopaedic applications for zrconium.
Abstract: More demanding performance expectations for total joint arthroplasty are driving the development of alternative bearing materials. Oxidized zirconium was developed as an alternative to cobalt-chromium alloy for knee and hip femoral components in order to reduce wear of the polyethylene counterface and to address the needs of metal-sensitive patients. Oxidation in high temperature air transforms the metallic Zr-2.5Nb alloy surface into a stable, durable, low-friction oxide ceramic without creating the risk for brittle fracture associated with monolithic ceramic components. This presentation reviews aspects of this technology with a historical perspective, including standards for the zirconium alloy, non-medical applications for oxidized zirconium, and previous orthopaedic applications for zirconium. Manufacturing processes for oxidized zirconium components are described, beginning with refining of the zirconium from beach sand, to producing the alloy ingot and bar, to fabricating the component shape, and finally to oxidizing the surface and burnishing it to a smooth finish. Conditions are described for producing the oxide with excellent integrity, which is nominally 5 µm thick and predominantly monoclinic phase. The metal and oxide microstructures are characterized and related to the mechanical properties of the components and durability of the oxide. Laboratory hip and knee simulator tests are reviewed, which indicate that oxidized zirconium components reduce wear of the polyethylene counterface by 40–90 % depending on test conditions. As evidenced by promising early clinical experience, oxidized zirconium components have characteristics that provide an alternative to conventional cobalt-chromium components with an interchangeable surgical technique, while providing the potential for superior performance.

44 citations

Patent
05 Feb 1988
TL;DR: In this paper, the zirconium barrier layer formed on the barrier surface acts to inhibit cracking during the tube production fabrication step and limits oxidation in the event that the cladding is breached during operation of the reactor, allowing the entrance of water or steam into the fuel element.
Abstract: Nuclear fuel elements for use in the core of a nuclear reactor include an improved composite cladding (17) having a zirconium barrier layer (22) metallurgically bonded on the inside surface of a zirconium alloy tube (21), wherein the inside surface of the barrier is alloyed with preselected elemental impurities to improve oxidation resistance. The zirconium barrier layer (22) forms a shield between the zirconium alloy tube (21) and a core of nuclear fuel material (16) enclosed in the composite cladding. The alloy layer formed on the barrier surface acts to inhibit cracking during the tube production fabrication step and limits oxidation in the event that the cladding is breached during operation of the reactor, allowing the entrance of water or steam into the fuel element.

43 citations


Network Information
Related Topics (5)
Alloy
171.8K papers, 1.7M citations
86% related
Microstructure
148.6K papers, 2.2M citations
84% related
Oxide
213.4K papers, 3.6M citations
79% related
Thin film
275.5K papers, 4.5M citations
79% related
Amorphous solid
117K papers, 2.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202395
2022215
2021137
2020164
2019194
2018219