scispace - formally typeset
Search or ask a question

Showing papers by "Arthur I. Cederbaum published in 1998"


Journal ArticleDOI
TL;DR: Because CYP3A4 is present in high amounts in human liver microsomes and is active in catalyzing the formation of reactive oxygen species, this CYP may make an important contribution in the overall ability of human livermicrosomes to generate active oxygen species.

239 citations


Journal ArticleDOI
TL;DR: Two Hep G2 subclones overexpressing CYP2E1 were established with the use of transfection and limited dilution screening techniques, and high levels of lipid peroxidation were found in the E47 cells, which became more pronounced after GSH depletion.
Abstract: Two Hep G2 subclones overexpressing CYP2E1 were established with the use of transfection and limited dilution screening techniques. The Hep G2-CI2E1-43 and -47 (E47) cells (transduced Hep G2 subclones that overexpress CYP2E1) grew at a slower rate than parental Hep G2 cells or control subclones that do not express CYP2E1, but remained fully viable. When GSH synthesis was inhibited by treatment with buthionine sulfoximine, GSH levels rapidly declined in E47 cells but not control cells, which is most likely a reflection of CYP2E1-catalyzed formation of reactive oxygen species. Under these conditions of GSH depletion, cytotoxicity and apoptosis were found only with the E47 cells. Low levels of lipid peroxidation were found in the E47 cells, which became more pronounced after GSH depletion. The antioxidants vitamin E, vitamin C, or trolox prevented the lipid peroxidation as well as the cytotoxicity and apoptosis, as did transfection with plasmid containing antisense CYP2E1 or overexpression of Bcl-2. Levels of ATP were lower in E47 cells because of damage to mitochondrial complex I. When GSH was depleted, oxygen uptake was markedly decreased with all substrates in the E47 extracts. Vitamin E completely prevented the decrease in oxygen uptake. Under conditions of CYP2E1 overexpression, two modes of CYP2E1-dependent toxicity can be observed in Hep G2 cells: a slower growth rate when cellular GSH levels are maintained and a loss of cellular viability when cellular GSH levels are depleted. Elevated lipid peroxidation plays an important role in the CYP2E1-dependent toxicity and apoptosis. This direct toxicity of overexpressed CYP2E1 may reflect the ability of this enzyme to generate reactive oxygen species even in the absence of added metabolic substrate.

160 citations


Journal ArticleDOI
TL;DR: Elevated generation of reactive oxygen species in HepG2 cells expressing CYP2E1 leads to lipid peroxidation in the presence of iron, and the ensuing prooxidative state damages mitochondria, releasing factors that activate caspase 3, leading to a loss in cell viability and DNA fragmentation.
Abstract: Iron can potentiate the toxicity of ethanol. Ethanol increases the content of cytochrome P450 2E1 (CYP2E1), which generates reactive oxygen species, and transition metals such as iron are powerful catalysts of hydroxyl radical formation and lipid peroxidation. Experiments were carried out to attempt to link CYP2E1, iron, and oxidative stress as a potential mechanism by which iron increases ethanol toxicity. The addition of ferric-nitrilotriacetate (Fe-NTA) to a HepG2 cell line expressing CYP2E1 decreased cell viability, whereas little effect was observed in control cells not expressing CYP2E1. Toxicity in the CYP2E1-expressing cells was markedly enhanced after the depletion of glutathione. Lipid peroxidation was increased by Fe-NTA, especially in cell extracts and medium from the CYP2E1-expressing cells. Toxicity was completely prevented by vitamin E or by 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, which also decreased the lipid peroxidation. Levels of ATP were lowered by Fe-NTA, and this was associated with a decreased rate of oxygen consumption by permeabilized cells with substrates donating electrons to complexes I, II, and IV of the respiratory chain. This mitochondrial damage was prevented by vitamin E. Toxicity was accompanied by DNA fragmentation, and this fragmentation was prevented by antioxidants. Overexpression of bcl-2 decreased the toxicity and DNA fragmentation produced by the combination of CYP2E1 plus Fe-NTA, as did a peptide inhibitor of caspase 3. These results suggest that elevated generation of reactive oxygen species in HepG2 cells expressing CYP2E1 leads to lipid peroxidation in the presence of iron, and the ensuing prooxidative state damages mitochondria, releasing factors that activate caspase 3, leading to a loss in cell viability and DNA fragmentation.

109 citations


Journal ArticleDOI
TL;DR: In this paper, a model system for the generation of 1-hydroxyethyl radical (HER) was used to study its interaction with GSH, ascorbic acid and alpha-tocopherol.

51 citations


Journal ArticleDOI
TL;DR: The results show that this HepG2 cell model can be used to establish a CYP2E1‐dependent ethanol hepatotoxicity system, and that induction of a state oxidative stress appears to play a central role in the CYP8‐dependent apoptosis and cytotoxicity.
Abstract: To establish direct linkage between the ethanol-inducible cytochrome P450, CYP2E1, ethanol hepatotoxicity, and lipid peroxidation, a HepG2 cell line which expresses human CYP2E1 was established by retroviral infection. Ethanol produced a time- and concentration-dependent cytotoxicity to HepG2 cells expressing the CYP2E1 but not to control cells. The ethanol toxicity was prevented by inhibitors of CYP2E1 and antioxidants. In a similar manner, addition of a polyunsaturated fatty acid such as arachidonic acid produced toxicity to the cells expressing CYP2E1 but not the control cells. Toxicity was associated with enhanced lipid peroxidation and was prevented by antioxidants. The ethanol and arachidonic acid toxicity was apoptotic in nature and was associated with activation of Caspases I and III. The toxicity and apoptosis could be prevented by peptide inhibitors of ICE and by transfection with a plasmid containing the cDNA for human Bcl-2. These results show that this HepG2 cell model can be used to establish a CYP2E1-dependent ethanol hepatotoxicity system, and that induction of a state oxidative stress appears to play a central role in the CYP2E1-dependent apoptosis and cytotoxicity.

38 citations


Journal ArticleDOI
TL;DR: It is proposed that elevated production of reactive oxygen intermediates by cells expressing CYP2E1 can cause lipid peroxidation, which subsequently promotes apoptosis and cell toxicity when the cells are enriched with polyunsaturated fatty acids such as arachidonic acid.
Abstract: The goal of the current study was to evaluate the effects of arachidonic acid, as a representative polyunsaturated fatty acid, on the viability of a HepG2 cell line, which has been transduced to express human cytochrome P4502E1 (CYP2E1). Arachldonic acid produced a concentration- and time-dependent toxicity to HepG2-MV2E1-9 cells, which express CYP2E1, but little or no toxicity was found with control cells. In contrast to arachidonic acid, oleic acid was not toxic to the HepG2-MV2E1-9 cells. The cytotoxicity of arachidonic acid involved a lipid peroxidation type of mechanism since toxicity was enhanced after depletion of cellular glutathione; formation of malondialdehyde and 4-hydroxy-2-nonenal was markedly elevated In the cells expressing CYP2E1, and toxicity was prevented by antioxidants and the iron chelator desferrioxamine. The CYP2E1-dependent arachidonic acid toxicity appeared to involve apoptosis, as demonstrated by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling and DNA laddering experiments. Trolox, which prevented toxicity of arachidonic acid, also prevented the apoptosis. Transfection with a plasmid containing bcl-2 resulted in complete protection against the CYP2E1-dependent arachidonic acid toxicity. It is proposed that elevated production of reactive oxygen intermediates by cells expressing CYP2E1 can cause lipid peroxidation, which subsequently promotes apoptosis and cell toxicity when the cells are enriched with polyunsaturated fatty acids such as arachidonic acid.

34 citations


Journal ArticleDOI
TL;DR: The HPLC procedure can readily detect the POBN/HER and PBN/HER nitroxides and their hydroxylamine derivatives in the same sample and may be of value in detecting HER spin-trapped adducts under biological reducing conditions.

21 citations


Journal ArticleDOI
TL;DR: Results suggest that redox-cycling of iron ions results in an activation of a ryanodine-sensitive calcium channel, which may play a role in the evolution of various hepatic disorders that are associated with chronic iron overload in humans.

11 citations