scispace - formally typeset
Search or ask a question

Showing papers by "Baojun Xu published in 2008"


Journal ArticleDOI
TL;DR: Steam processing exhibited several advantages in retaining the integrity of the legume appearance and texture of the cooked product, shortening process time, and greater retention of antioxidant components and activities.

326 citations


Journal ArticleDOI
TL;DR: The effects of boiling and steaming processes on the phenolic components and antioxidant activities of whole yellow and black soybeans were investigated and quantitatively determined by HPLC.
Abstract: The effects of boiling and steaming processes on the phenolic components and antioxidant activities of whole yellow (with yellow seed coat and yellow cotyledon) and black (with black seed coat and green cotyledon) soybeans were investigated. As compared to the raw soybeans, all processing methods caused significant (p < 0.05) decreases in total phenolic content (TPC), total flavonoid content (TFC), condensed tannin content (CTC), monomeric anthocyanin content (MAC), DPPH free radical scavenging activity (DPPH), ferric reducing antioxidant power (FRAP), and oxygen radical absorbing capacity (ORAC) in black soybeans. Pressure steaming caused significant (p < 0.05) increases in TPC, CTC, DPPH, FRAP, and ORAC in yellow soybeans. The steaming resulted in a greater retention of TPC, DPPH, FRAP, and ORAC values in both yellow and black soybeans as compared to the boiling treatments. To further investigate the effect of processing on phenolic compounds and elucidate the contribution of these compounds to changes of antioxidant activities, phenolic acids, isoflavones, and anthocyanins were quantitatively determined by HPLC. The pressure steaming treatments caused significant (p < 0.05) increases in gallic acid and 2,3,4-trihydroxybenzoic acid, whereas all treatments caused significant (p < 0.05) decreases in two predominant phenolic acids (chlorogenic acid and trans-cinnamic acid), and total phenolic acids for both yellow and black soybeans. All thermal processing caused significant (p < 0.05) increases in aglucones and beta-glucosides of isoflavones, but caused significant (p < 0.05) decreases in malonylglucosides of isoflavones for both yellow and black soybeans. All thermal processing caused significant (p < 0.05) decreases of cyanidin-3-glucoside and peonidin-3-glucoside in black soybeans. Significant correlations existed between selected phenolic compositions, isoflavone and anthocyanin contents, and antioxidant properties of cooked soybeans.

271 citations


Journal ArticleDOI
TL;DR: The information generated from this study on the distribution and content of their active components is useful for the effective use of black soybeans as an ingredient for promoting health.
Abstract: Black soybeans have been used as an excellent dietary source for disease prevention and health promotion in China for hundreds of years. However, information about the distribution of health-promoting phenolic compositions in different physical parts of black soybean and the contribution of phenolic compositions to overall antioxidant capacity is limited. To elucidate the distribution of phenolic composition and their contribution to antioxidant activities in black soybean, the total and individual phenolic profiles, and antioxidant capacities of seed coat, dehulled and whole black soybean were systematically investigated. The seed coat exhibited much higher total phenolic indexes and antioxidant activities than whole and dehulled black soybean. Dehulled black soybean possessed similar levels of total phenolic content, total flavonoid content, 2-diphenyl-1-picryhydrazyl (DPPH) radical scavenging activity, ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) activities as compared to whole yellow soybean. Cyanidin-3-glucoside, petunidin-3-glucoside, and peonidin-3-glucoside were detected in the seed coat but not in dehulled black soybean and yellow soybean. Among benzoic acid detected, caffeic and chlorogenic acid were the predominant phenolic acids. Whole black soybean and dehulled black soybean exhibited similar isoflavone contents in 7- O-beta-glucosides and malonylglucosides of daidzein and genistein. The seed coat possessed significantly ( p < 0.05) lower 7- O-beta-glucosides and malonylglucosides of daidzein and genistein, acetylglycitin, and total isoflavones than whole and dehulled black soybean. The contribution of phenolics in the seed coat to the antioxidant activity of black soybean parts depends on the assay methods. When measured with the DPPH and FRAP methods, the seed coat contributed 90% of the total antioxidant capacity of black soybean. However, when measured with the ORAC method, the seed coat and dehulled portion contributed approximately equally the total antioxidant capacity of black soybeans. The information generated from this study on the distribution and content of their active components is useful for the effective use of black soybeans as an ingredient for promoting health.

174 citations


Journal ArticleDOI
TL;DR: Steam processing exhibited several advantages in appearance and texture of the cooked product, shortening processing time, and in greater retention of TPC and antioxidant activities, indicating that processing methods significantly changed contents and activities of antioxidant components of black beans.
Abstract: The effects of soaking, boiling, and steaming processes on the phenolic components and antioxidant activity of black beans were investigated. All processed beans exhibited significantly (P < 0.05) lower antioxidant activities than raw beans in total phenolic content (TPC), DPPH free radical scavenging activity (DPPH), and oxygen radical absorbing capacity (ORAC). Steaming processes resulted in a greater retention of TPC and ORAC values than the boiling processes. Pressure boiling shortened processing time compared to regular boiling, resulted in insignificant differences in TPC, but significantly increased in ORAC as compared to the regular boiling method. Pressure steaming resulted in significant decreases in TPC, DPPH, while significantly increased in ORAC compared to regular steaming. Greater TPC, DPPH, and ORAC values were detected in boiling water than in the soaking and steaming water. Mass balance analysis showed that boiling caused more dry solid loss than steaming. All of these results indicated that processing methods significantly changed contents and activities of antioxidant components of black beans. Steam processing exhibited several advantages in appearance and texture of the cooked product, shortening processing time, and in greater retention of TPC and antioxidant activities. Steam processing may be used to develop high-quality health-promoting black bean products.

143 citations


Journal ArticleDOI
TL;DR: Kinetic analysis showed that heat inactivation (denaturation) of TIA, under the continuous processing conditions of the Microthermics processor, followed first-order reaction kinetics, and the activation energy of the inactivation was 34 kJ/mol.
Abstract: Soy foods contain significant health-promoting components but also may contain beany flavor and trypsin inhibitor activity (TIA), which can cause pancreatic disease if present at a high level. Thermal processing can inactivate TIA and lipoxygenase. Ultrahigh-temperature (UHT) processing is relatively new for manufacturing soy milk. Simultaneous elimination of TIA and soy odor by UHT processing for enhancing soy milk quality has not been reported. The objective was to determine TIA in soy milk processed by traditional, steam injection, blanching, and UHT methods and to compare the products with commercial soy milk products. Soybean was soaked and blanched at 70-85 degrees C for 30 s-7.5 min. The blanched beans were made into base soy milk. The hexanal content of the base soy milk was determined by gas chromatography to determine the best conditions for further thermal processing by indirect and direct UHT methods at 135-150 degrees C for 10-50 s using the Microthermics processor. Soy milk was also made from soaked soybeans by traditional batch cooking and steaming methods. Eighteen commercial products were selected from the supermarket. Residual TIA in soy milk processed by the traditional and steam injection to 100 degrees C for 20 min was approximately 13%. Blanching could inactivate 25-50% of TIAs of the raw soy milk. The blanch conditions of 80 degrees C and 2 min were selected for UHT processing because these conditions produced blanched soy milk without hexanal, indicating a complete heat inactivation of lipoxygenases. The TIA decreased with increased temperature and time of UHT heating. The maximal trypsin inhibitor inactivation was achieved by UHT direct and indirect methods with residual activities of approximately 10%. Some commercial soy milk products contained high TIAs. The results are important to the food industry and consumers. Kinetic analysis showed that heat inactivation (denaturation) of TIA, under the continuous processing conditions of the Microthermics processor, followed first-order reaction kinetics, and the activation energy of the inactivation was 34 kJ/mol.

88 citations


Journal ArticleDOI
TL;DR: The data suggest that some selected soybean cultivars may be used as high-quality food-grade soybeans for providing high phenolic phytochemicals and antioxidant activities.
Abstract: Phenolic profiles and antioxidant properties of a total of 30 soybean samples, including 27 grown in the North Dakota-Minnesota region and three soybeans from the other regions, were investigated. The total phenolic content (TPC), total flavonoids content (TFC), phenolic acids, flavonols, anthocyanins, and isoflavones were quantified. Antioxidant properties of soybean extracts were assessed using 2-diphenyl-1-picryhydrazyl free radical scavenging activity (DPPH), ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) methods. Results showed that black soybean cultivars possessed significantly higher TPC, TFC, DPPH, FRAP, and ORAC values than all yellow soybean cultivars. However, black soybean cultivars did not exhibit significantly higher individual phenolic contents (except for anthocyanins), such as phenolic acids and isoflavones, than the yellow soybean cultivars. The isoflavone profiles of North Dakota soybean cultivars were similar to those of South Dakota, but average values of total isoflavone (TI) contents were higher than soybeans grown in the other states and Korea and Japan according to the U.S. Department of Agriculture-Iowa State University Database on the isoflavone contents of foods. Correlation assays showed that TPC, TI, total phenolic acids, daidzin, genistin, malonyldaidzin, daidzein, genistein, and trans-cinnamic acid significantly ( r = 0.73, 0.62, 0.49, 0.68, 0.59, 0.59, 0.56, 0.47, and 0.76, respectively, p < 0.0001) correlated with ORAC values of yellow soybeans. Both isoflavones and phenolic acids contributed to the ORAC values of yellow soybeans. These data suggest that some selected soybean cultivars may be used as high-quality food-grade soybeans for providing high phenolic phytochemicals and antioxidant activities.

88 citations