scispace - formally typeset
Search or ask a question

Showing papers by "Barbara Guerra published in 2009"


Journal ArticleDOI
TL;DR: It is found that chlorpromazine worked synergistically together with tamoxifen with respect to reduction of cell growth and metabolic activity, both in the antiestrogen-sensitive breast cancer cell line, MCF-7, and in a tamoxIFen-resistant cell lineadays, established from the MCf-7 cells.
Abstract: Tamoxifen resistance is a major clinical problem in the treatment of estrogen receptor alpha-positive breast tumors. It is, at present, unclear what exactly causes tamoxifen resistance. For decades, chlorpromazine has been used for treating psychotic diseases, such as schizophrenia. However, the compound is now also recognized as a multitargeting drug with diverse potential applications, for example, it has antiproliferative properties and it can reverse resistance toward antibiotics in bacteria. Furthermore, chlorpromazine can reverse multidrug resistance caused by overexpression of P-glycoprotein in cancer cells. In this study, we have investigated the effect of chlorpromazine on tamoxifen response of human breast cancer cells. We found that chlorpromazine worked synergistically together with tamoxifen with respect to reduction of cell growth and metabolic activity, both in the antiestrogen-sensitive breast cancer cell line, MCF-7, and in a tamoxifen-resistant cell line, established from the MCF-7 cells. Tamoxifen-sensitive and tamoxifen-resistant cells were killed equally well by combined treatment with chlorpromazine and tamoxifen. This synergistic effect could be prevented by addition of estrogen, suggesting that chlorpromazine enhances the effect of tamoxifen through an estrogen receptor-mediated mechanism. To investigate this putative mechanism, we applied biophysical techniques to simple model membranes in the form of unilamellar liposomes of well-defined composition and found that chlorpromazine interacts strongly with lipid bilayers of different composition leading to increased permeability. This implies that chlorpromazine can change influx properties of membranes hence suggesting that chlorpromazine may be a promising chemosensitizing compound for enhancing the cytotoxic effect of tamoxifen.

53 citations


Journal ArticleDOI
TL;DR: Endogenous protein kinase CK2 was inhibited by resorufin by ca.
Abstract: Screening a natural compound library led to the identification of resorufin as a highly selective and potent inhibitor of protein kinase CK2. Out of 52 kinases tested, only CK2 was inhibited, in contrast to emodin, a structurally related, known CK2 inhibitor that, in addition to CK2, inhibited ten o

34 citations


Journal Article
TL;DR: In this article, resorufin was identified as a highly selective and potent inhibitor of protein kinase CK2, in which only CK2 was inhibited, in contrast to emodin, a structurally related, known CK2 inhibitor that inhibited ten other kinases by 90%.
Abstract: Screening a natural compound library led to the identification of resorufin as a highly selective and potent inhibitor of protein kinase CK2. Out of 52 kinases tested, only CK2 was inhibited, in contrast to emodin, a structurally related, known CK2 inhibitor that, in addition to CK2, inhibited ten other kinases by 90%. The IC50 values determined for the CK2 holoenzymes were 1.5 mol/l and for the free catalytic subunits ca. 4 mol/l. Altogether four cell lines were subjected to resorufin and emodin treatment. In the case of the three prostate carcinoma cell lines (PC-3, DU-145, LNCaP), 24 h treatment with 40 mol/l resorufin led to 15–20% dead cells; however, no caspase-mediated apoptosis was observed. In the case of the colorectal carcinoma HCT116 cell line, a similar picture was obtained, yet, when resorufin was administered to cells treated with doxorubicin, apoptosis was strongly induced within 24 h. Endogenous protein kinase CK2 was inhibited by resorufin by ca. 80% in the three prostate cell lines. In the case of the HCT116 cells, the inhibition was only 40% supporting the notion of cell line-specific selectivity. Moreover, we analysed the effect of resorufin and emodin on selected signalling molecules in the cell lines under investigation.

1 citations