scispace - formally typeset
Search or ask a question

Showing papers by "Bärbel Rohrer published in 2007"


Journal ArticleDOI
TL;DR: It is confirmed that cells that normally die by apoptosis will execute cell death by necrosis if the normal pathway is blocked, and the up-stream regulators of autophagy need to be identified as potential therapeutic targets in photoreceptor degeneration.
Abstract: Studies on human and animal models of retinal dystrophy have suggested that apoptosis may be the common pathway of photoreceptor cell death. Autophagy, the major cellular degradation process in animal cells, is important in normal development and tissue remodeling, as well as under pathological conditions. Previously we provided evidence that genes, whose products are involved in apoptosis and autophagy, may be co-expressed in photoreceptors undergoing degeneration. Here, we investigated autophagy in oxidative stress-mediated cell death in photoreceptors, analyzing the light-damage mouse model and 661W photoreceptor cells challenged with H2O2. In the in vivo model, we demonstrated a time-dependent increase in the number of TUNEL-positive cells, concomitant with the formation of autophagosomes. In vitro, oxidative stress increased mRNA levels of apoptotic and autophagic marker genes. H2O2 treatment resulted in the accumulation of TUNEL-positive cells, the majority of which contain autophagosomes. To determ...

160 citations


Journal ArticleDOI
TL;DR: A central role for oxidative stress is established in cGMP-induced cell death and a ROS-mediated sequential activation of signal transduction events is suggested, which provide targets for future treatment strategies.
Abstract: Sustained elevation in cGMP and a concomitant increase in intracellular Ca(2+) levels in the rd1 photoreceptors are followed by a rapid loss of photoreceptors. In a murine-derived photoreceptor cell line, 661W, treated with the phosphodiesterase inhibitor IBMX or the cyclic GMP-gated channel agonist 8-bromo-cGMP, it was previously found that the induced cell death was mediated by calpain and caspase-3. Because oxidative stress is a common product of ionic imbalance or elevated Ca(2+), we tested the role of oxidative stress in cGMP-induced photoreceptor cell death. In the rd1 mouse retina, oxidative stress was found to precede calpain and caspase-3 activation. In 661W cells, the increase in intracellular cGMP and Ca(2+) resulted in the generation of reactive oxygen species (ROS), the activation of oxidative stress enzymes, and the activation of calpain, followed by apoptosis mediated by the effector caspase-3. All these events, including calpain activation, were ameliorated by docosahexanoic acid (DHA). The cell-permeable inhibitor of calpain, SJA6017, while inhibiting cell death, had no effect on the generation of oxidative stress. These results establish a central role for oxidative stress in cGMP-induced cell death and suggest a ROS-mediated sequential activation of signal transduction events, which provide targets for future treatment strategies.

68 citations


Journal ArticleDOI
TL;DR: The investigation revealed that unless the common upstream initiator for a given photoreceptor dystrophy can be found, multiple rescue paradigms need to be used to target all active pathways, which suggests that the non-caspase-dependent mechanisms may actively participate in the demise of the photoreceptors.
Abstract: Photoreceptor degeneration in human photoreceptor dystrophies and in the relevant animal models has been thought to be executed by one common mechanism- caspase-mediated apoptosis. However, recent experiments have challenged this concept. Gene defects or environmental stressors appear to cause oxidative stress and altered metabolism, which appear to induce caspase-dependent and caspase-independent cell death mechanisms such as the activation of cysteine-proteases, lysosomal proteases and autophagy and possibly complement-mediated lysis. In this article, we point out mechanistic parallels between these pathways and summarize our recently published investigation using a temporal analysis of the different pathways, which suggests that the noncaspase-dependent mechanisms may actively participate in the demise of the photoreceptors rather than represent a passive response of the retina to the presence of dying cells. Our investigation revealed that unless the common upstream initiator for a given photoreceptor dystrophy can be found, multiple rescue paradigms need to be used to target all active pathways.

35 citations


Journal ArticleDOI
TL;DR: The results suggest that both, the classical complement system of innate immunity and a functional acquired immune response are not essential for the degenerative process in the rd1 mouse retina.

24 citations