scispace - formally typeset
Search or ask a question

Showing papers by "Bonnie Bartel published in 2019"


Journal ArticleDOI
20 Mar 2019
TL;DR: This finding suggests that even minor peroxisomal localization of the PTS1 protein DEG15, the PTS2‐processing protease, is sufficient to maintain robust PTS2 processing.
Abstract: The sorting of eukaryotic proteins to various organellar destinations requires receptors that recognize cargo protein targeting signals and facilitate transport into the organelle. One such receptor is the peroxin PEX5, which recruits cytosolic cargo carrying a peroxisome-targeting signal (PTS) type 1 (PTS1) for delivery into the peroxisomal lumen (matrix). In plants and mammals, PEX5 is also indirectly required for peroxisomal import of proteins carrying a PTS2 signal because PEX5 binds the PTS2 receptor, bringing the associated PTS2 cargo to the peroxisome along with PTS1 cargo. Despite PEX5 being the PTS1 cargo receptor, previously identified Arabidopsis pex5 mutants display either impairment of both PTS1 and PTS2 import or defects only in PTS2 import. Here we report the first Arabidopsis pex5 mutant with an exclusive PTS1 import defect. In addition to markedly diminished GFP-PTS1 import and decreased pex5-2 protein accumulation, this pex5-2 mutant shows typical peroxisome-related defects, including inefficient β-oxidation and reduced growth. Growth at reduced or elevated temperatures ameliorated or exacerbated pex5-2 peroxisome-related defects, respectively, without markedly changing pex5-2 protein levels. In contrast to the diminished PTS1 import, PTS2 processing was only slightly impaired and PTS2-GFP import appeared normal in pex5-2. This finding suggests that even minor peroxisomal localization of the PTS1 protein DEG15, the PTS2-processing protease, is sufficient to maintain robust PTS2 processing.

70 citations


Journal ArticleDOI
TL;DR: This work developed a screen that consistently recovers Arabidopsis atg mutations by exploiting mutants with defective LON2/At5g47040, a protease implicated in peroxisomal quality control, and optimized a lon2 suppressor screen to expedite recovery of additional atg mutants.
Abstract: Macroautophagy is a process through which eukaryotic cells degrade large substrates including organelles, protein aggregates, and invading pathogens. Over 40 autophagy-related (ATG) genes have been identified through forward-genetic screens in yeast. Although homology-based analyses have identified conserved ATG genes in plants, only a few atg mutants have emerged from forward-genetic screens in Arabidopsis thaliana. We developed a screen that consistently recovers Arabidopsis atg mutations by exploiting mutants with defective LON2/At5g47040, a protease implicated in peroxisomal quality control. Arabidopsis lon2 mutants exhibit reduced responsiveness to the peroxisomally-metabolized auxin precursor indole-3-butyric acid (IBA), heightened degradation of several peroxisomal matrix proteins, and impaired processing of proteins harboring N-terminal peroxisomal targeting signals; these defects are ameliorated by preventing autophagy. We optimized a lon2 suppressor screen to expedite recovery of additional atg mutants. After screening mutagenized lon2-2 seedlings for restored IBA responsiveness, we evaluated stabilization and processing of peroxisomal proteins, levels of several ATG proteins, and levels of the selective autophagy receptor NBR1/At4g24690, which accumulates when autophagy is impaired. We recovered 21 alleles disrupting 6 ATG genes: ATG2/At3g19190, ATG3/At5g61500, ATG5/At5g17290, ATG7/At5g45900, ATG16/At5g50230, and ATG18a/At3g62770. Twenty alleles were novel, and 3 of the mutated genes lack T-DNA insertional alleles in publicly available repositories. We also demonstrate that an insertional atg11/At4g30790 allele incompletely suppresses lon2 defects. Finally, we show that NBR1 is not necessary for autophagy of lon2 peroxisomes and that NBR1 overexpression is not sufficient to trigger autophagy of seedling peroxisomes, indicating that Arabidopsis can use an NBR1-independent mechanism to target peroxisomes for autophagic degradation. Abbreviations: ATG: autophagy-related; ATI: ATG8-interacting protein; Col-0: Columbia-0; DSK2: dominant suppressor of KAR2; EMS: ethyl methanesulfonate; GFP: green fluorescent protein; IAA: indole-3-acetic acid; IBA: indole-3-butyric acid; ICL: isocitrate lyase; MLS: malate synthase; NBR1: Next to BRCA1 gene 1; PEX: peroxin; PMDH: peroxisomal malate dehydrogenase; PTS: peroxisomal targeting signal; thiolase: 3-ketoacyl-CoA thiolase; UBA: ubiquitin-associated; WT: wild type.

34 citations


Journal ArticleDOI
TL;DR: Two viable Arabidopsis pex16 alleles that accumulate negligible PEX16 protein levels are characterized and show impaired peroxisome function and reduced growth that could be alleviated by an external fixed carbon source, decreased responsiveness to peroxISomally processed hormone precursors, and worsened or improved perox isome function in combination with other pex mutants.
Abstract: Peroxisomes rely on peroxins (PEX proteins) for biogenesis, importing membrane and matrix proteins, and fission. PEX16, which is implicated in peroxisomal membrane protein targeting and forming nascent peroxisomes from the endoplasmic reticulum (ER), is unusual among peroxins because it is inserted co-translationally into the ER and localizes to both ER and peroxisomal membranes. PEX16 mutations in humans, yeast, and plants confer some common peroxisomal defects; however, apparent functional differences have impeded the development of a unified model for PEX16 action. The only reported pex16 mutant in plants, the Arabidopsis shrunken seed1 mutant, is inviable, complicating analysis of PEX16 function after embryogenesis. Here, we characterized two viable Arabidopsis pex16 alleles that accumulate negligible PEX16 protein levels. Both mutants displayed impaired peroxisome function - slowed consumption of stored oil bodies, decreased import of matrix proteins, and increased peroxisome size. Moreover, one pex16 allele exhibited reduced growth that could be alleviated by an external fixed carbon source, decreased responsiveness to peroxisomally processed hormone precursors, and worsened or improved peroxisome function in combination with other pex mutants. Because the mutations impact different regions of the PEX16 gene, these viable pex16 alleles allow assessment of the importance of Arabidopsis PEX16 and its functional domains.

4 citations