Author
Brijesh Verma
Other affiliations: University of Queensland, University of Missouri, Griffith University ...read more
Bio: Brijesh Verma is an academic researcher from Central Queensland University. The author has contributed to research in topics: Artificial neural network & Feature extraction. The author has an hindex of 33, co-authored 237 publications receiving 3499 citations. Previous affiliations of Brijesh Verma include University of Queensland & University of Missouri.
Papers published on a yearly basis
Papers
More filters
TL;DR: A comprehensive review of recent advances in dataset creation, algorithm development, and investigations of the effects of occlusion critical for robust performance in FEA systems is presented in this paper.
Abstract: Automatic machine-based Facial Expression Analysis (FEA) has made substantial progress in the past few decades driven by its importance for applications in psychology, security, health, entertainment, and human–computer interaction. The vast majority of completed FEA studies are based on nonoccluded faces collected in a controlled laboratory environment. Automatic expression recognition tolerant to partial occlusion remains less understood, particularly in real-world scenarios. In recent years, efforts investigating techniques to handle partial occlusion for FEA have seen an increase. The context is right for a comprehensive perspective of these developments and the state of the art from this perspective. This survey provides such a comprehensive review of recent advances in dataset creation, algorithm development, and investigations of the effects of occlusion critical for robust performance in FEA systems. It outlines existing challenges in overcoming partial occlusion and discusses possible opportunities in advancing the technology. To the best of our knowledge, it is the first FEA survey dedicated to occlusion and aimed at promoting better-informed and benchmarked future work.
416 citations
TL;DR: A comprehensive review of recent advances in dataset creation, algorithm development, and investigations of the effects of occlusion critical for robust performance in FEA systems is presented in this article.
Abstract: Automatic machine-based Facial Expression Analysis (FEA) has made substantial progress in the past few decades driven by its importance for applications in psychology, security, health, entertainment and human computer interaction. The vast majority of completed FEA studies are based on non-occluded faces collected in a controlled laboratory environment. Automatic expression recognition tolerant to partial occlusion remains less understood, particularly in real-world scenarios. In recent years, efforts investigating techniques to handle partial occlusion for FEA have seen an increase. The context is right for a comprehensive perspective of these developments and the state of the art from this perspective. This survey provides such a comprehensive review of recent advances in dataset creation, algorithm development, and investigations of the effects of occlusion critical for robust performance in FEA systems. It outlines existing challenges in overcoming partial occlusion and discusses possible opportunities in advancing the technology. To the best of our knowledge, it is the first FEA survey dedicated to occlusion and aimed at promoting better informed and benchmarked future work.
249 citations
01 Mar 2001
TL;DR: An easy-to-use intelligent system that gives the user options to diagnose, detect, enlarge, zoom and measure distances of areas in digital mammograms and finds that a combination of three features is the best combination to distinguish a benign microcalcification pattern from one that is malignant.
Abstract: An intelligent computer-aided diagnosis system can be very helpful for radiologist in detecting and diagnosing microcalcification patterns earlier and faster than typical screening programs. In this paper, we present a system based on fuzzy-neural and feature extraction techniques for detecting and diagnosing microcalcifications' patterns in digital mammograms. We have investigated and analyzed a number of feature extraction techniques and found that a combination of three features (such as entropy, standard deviation and number of pixels) is the best combination to distinguish a benign microcalcification pattern from one that is malignant. A fuzzy technique in conjunction with three features was used to detect a microcalcification pattern and a neural network was used to classify it into benign/malignant. The system was developed on a Microsoft Windows platform. It is an easy-to-use intelligent system that gives the user options to diagnose, detect, enlarge, zoom and measure distances of areas in digital mammograms.
219 citations
03 Aug 2003
TL;DR: This research describes neural network-based techniques for segmented character recognition that may be applied to the segmentation and recognition components of an off-line handwritten word recognition system.
Abstract: High accuracy character recognition techniques can provide useful information for segmentation-based handwritten word recognition systems. This research describes neural network-based techniques for segmented character recognition that may be applied to the segmentation and recognition components of an off-line handwritten word recognition system. Two neural architectures along with two different feature extraction techniques were investigated. A novel technique for character feature extraction is discussed and compared with others in the literature. Recognition results above 80% are reported using characters automatically segmented from the CEDAR benchmark database as well as standard CEDAR alphanumerics.
125 citations
TL;DR: A neural-genetic algorithm for feature selection in conjunction with neural and statistical classifiers to classify microcalcification patterns in digital mammograms is proposed and investigated and results show that the proposed approach is able to find an appropriate feature subset and neural classifier achieves better results than two statistical models.
Abstract: Digital mammography is one of the most suitable methods for early detection of breast cancer. It uses digital mammograms to find suspicious areas containing benign and malignant microcalcifications. However, it is very difficult to distinguish benign and malignant microcalcifications. This is reflected in the high percentage of unnecessary biopsies that are performed and many deaths caused by late detection or misdiagnosis. A computer based feature selection and classification system can provide a second opinion to the radiologists in assessment of microcalcifications. The research in this paper proposes and investigates a neural-genetic algorithm for feature selection in conjunction with neural and statistical classifiers to classify microcalcification patterns in digital mammograms. The obtained results show that the proposed approach is able to find an appropriate feature subset and neural classifier achieves better results than two statistical models.
113 citations
Cited by
More filters
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.
10,141 citations
Journal Article•
9,185 citations
TL;DR: The steps that should be followed in the development of artificial neural network models are outlined, including the choice of performance criteria, the division and pre-processing of the available data, the determination of appropriate model inputs and network architecture, optimisation of the connection weights (training) and model validation.
Abstract: Artificial Neural Networks (ANNs) are being used increasingly to predict and forecast water resources variables. In this paper, the steps that should be followed in the development of such models are outlined. These include the choice of performance criteria, the division and pre-processing of the available data, the determination of appropriate model inputs and network architecture, optimisation of the connection weights (training) and model validation. The options available to modellers at each of these steps are discussed and the issues that should be considered are highlighted. A review of 43 papers dealing with the use of neural network models for the prediction and forecasting of water resources variables is undertaken in terms of the modelling process adopted. In all but two of the papers reviewed, feedforward networks are used. The vast majority of these networks are trained using the backpropagation algorithm. Issues in relation to the optimal division of the available data, data pre-processing and the choice of appropriate model inputs are seldom considered. In addition, the process of choosing appropriate stopping criteria and optimising network geometry and internal network parameters is generally described poorly or carried out inadequately. All of the above factors can result in non-optimal model performance and an inability to draw meaningful comparisons between different models. Future research efforts should be directed towards the development of guidelines which assist with the development of ANN models and the choice of when ANNs should be used in preference to alternative approaches, the assessment of methods for extracting the knowledge that is contained in the connection weights of trained ANNs and the incorporation of uncertainty into ANN models.
2,181 citations
15 Oct 2004
2,118 citations