scispace - formally typeset
Search or ask a question

Showing papers by "Bruno H. Repp published in 2015"


Journal ArticleDOI
25 May 2015
TL;DR: This work presents a unified method for parameter estimation of linear sensorimotor synchronization models that extends available techniques and enhances their usability, and reliably and efficiently recovers the parameters of two influential linear models.
Abstract: Linear models have been used in several contexts to study the mechanisms that underpin sensorimotor synchronization. Given that their parameters are often linked to psychological processes such as phase correction and period correction, the fit of the parameters to experimental data is an important practical question. We present a unified method for parameter estimation of linear sensorimotor synchronization models that extends available techniques and enhances their usability. This method enables reliable and efficient analysis of experimental data for single subject and multi-person synchronization. In a previous paper (Jacoby et al., 2015), we showed how to significantly reduce the estimation error and eliminate the bias of parameter estimation methods by adding a simple and empirically justified constraint on the parameter space. By applying this constraint in conjunction with the tools of matrix algebra, we here develop a novel method for estimating the parameters of most linear models described in the literature. Through extensive simulations, we demonstrate that our method reliably and efficiently recovers the parameters of two influential linear models: Vorberg and Wing (1996), and Schulze et al. (2005), together with their multi-person generalization to ensemble synchronization. We discuss how our method can be applied to include the study of individual differences in sensorimotor synchronization ability, for example, in clinical populations and ensemble musicians.

32 citations


Journal ArticleDOI
25 May 2015
TL;DR: In this paper, a mathematical analysis of the parameter interdependence problem in linear models of sensorimotor synchronization is presented, and it is shown that this problem cannot be resolved by any unbiased estimation method without adopting further assumptions.
Abstract: The mechanisms that support sensorimotor synchronization — that is, the temporal coordination of movement with an external rhythm — are often investigated using linear computational models. The main method used for estimating the parameters of this type of model was established in the seminal work of Vorberg and Schulze (2002), and is based on fitting the model to the observed autocovariance function of asynchronies between movements and pacing events. Vorberg and Schulze also identified the problem of parameter interdependence, namely, that different sets of parameters might yield almost identical fits, and therefore the estimation method cannot determine the parameters uniquely. This problem results in a large estimation error and bias, thereby limiting the explanatory power of existing linear models of sensorimotor synchronization. We present a mathematical analysis of the parameter interdependence problem. By applying the Cramer–Rao lower bound, a general lower bound limiting the accuracy of any parameter estimation procedure, we prove that the mathematical structure of the linear models used in the literature determines that this problem cannot be resolved by any unbiased estimation method without adopting further assumptions. We then show that adding a simple and empirically justified constraint on the parameter space — assuming a relationship between the variances of the noise terms in the model — resolves the problem. In a follow-up paper in this volume, we present a novel estimation technique that uses this constraint in conjunction with matrix algebra to reliably estimate the parameters of almost all linear models used in the literature.

7 citations