scispace - formally typeset
Search or ask a question

Showing papers by "C. J. Ballance published in 2021"


Posted Content
TL;DR: In this article, the authors proposed a quantum key distribution protocol with device-independent security. But the secrecy of the key is not guaranteed device-independently, but based on the validity of quantum theory, and certified by measurement statistics observed during the experiment.
Abstract: Cryptographic key exchange protocols traditionally rely on computational conjectures such as the hardness of prime factorisation to provide security against eavesdropping attacks. Remarkably, quantum key distribution protocols like the one proposed by Bennett and Brassard provide information-theoretic security against such attacks, a much stronger form of security unreachable by classical means. However, quantum protocols realised so far are subject to a new class of attacks exploiting implementation defects in the physical devices involved, as demonstrated in numerous ingenious experiments. Following the pioneering work of Ekert proposing the use of entanglement to bound an adversary's information from Bell's theorem, we present here the experimental realisation of a complete quantum key distribution protocol immune to these vulnerabilities. We achieve this by combining theoretical developments on finite-statistics analysis, error correction, and privacy amplification, with an event-ready scheme enabling the rapid generation of high-fidelity entanglement between two trapped-ion qubits connected by an optical fibre link. The secrecy of our key is guaranteed device-independently: it is based on the validity of quantum theory, and certified by measurement statistics observed during the experiment. Our result shows that provably secure cryptography with real-world devices is possible, and paves the way for further quantum information applications based on the device-independence principle.

4 citations


Posted Content
TL;DR: In this paper, the amplitude modulation of the radio-frequency trapping field was used to detect and compensate electric fields induced by stray electric fields. But this method requires a single laser beam to resolve electric fields in multiple directions.
Abstract: Precise control of charged particles in radio-frequency (Paul) traps requires minimising excess micromotion induced by stray electric fields. We present a method to detect and compensate such fields through amplitude modulation of the radio-frequency trapping field. Modulation at frequencies close to the motional modes of the trapped particle excites coherent motion whose amplitude linearly depends on the stray field. In trapped-ion experiments, this motion can be detected by recording the arrival times of photons scattered during laser cooling. Only a single laser beam is required to resolve fields in multiple directions. In a demonstration using a $^{88}\mathrm{Sr}^{+}$ ion in a surface electrode trap, we achieve a sensitivity of $0.1\, \mathrm{V}\, \mathrm{m}^{-1}\, /\, \sqrt{\mathrm{Hz}}$ and a minimal uncertainty of $0.015\, \mathrm{V}\, \mathrm{m}^{-1}$.

1 citations


Posted Content
TL;DR: In this article, the first quantum network of entangled optical clocks using two $88}$Sr$^+$ ions separated by a macroscopic distance (2 m) that are entangled using a photonic link is presented.
Abstract: Optical atomic clocks are our most precise tools to measure time and frequency. They enable precision frequency comparisons between atoms in separate locations to probe the space-time variation of fundamental constants, the properties of dark matter, and for geodesy. Measurements on independent systems are limited by the standard quantum limit (SQL); measurements on entangled systems, in contrast, can surpass the SQL to reach the ultimate precision allowed by quantum theory - the so-called Heisenberg limit. While local entangling operations have been used to demonstrate this enhancement at microscopic distances, frequency comparisons between remote atomic clocks require rapid high-fidelity entanglement between separate systems that have no intrinsic interactions. We demonstrate the first quantum network of entangled optical clocks using two $^{88}$Sr$^+$ ions separated by a macroscopic distance (2 m), that are entangled using a photonic link. We characterise the entanglement enhancement for frequency comparisons between the ions. We find that entanglement reduces the measurement uncertainty by a factor close to $\sqrt{2}$, as predicted for the Heisenberg limit, thus halving the number of measurements required to reach a given precision. Practically, today's optical clocks are typically limited by laser dephasing; in this regime, we find that using entangled clocks confers an even greater benefit, yielding a factor 4 reduction in the number of measurements compared to conventional correlation spectroscopy techniques. As a proof of principle, we demonstrate this enhancement for measuring a frequency shift applied to one of the clocks. Our results show that quantum networks have now attained sufficient maturity for enhanced metrology. This two-node network could be extended to additional nodes, to other species of trapped particles, or to larger entangled systems via local operations.