scispace - formally typeset
Search or ask a question

Showing papers by "C. Wilkinson published in 2014"


Posted Content
TL;DR: In this paper, the T2K neutrino oscillation experiment has been used to obtain the most precise measurement of the mixing parameter theta-23, where the best-fit mass-squared splitting for normal hierarchy is Delta m^2{32} = (2.51 +- 0.534 + 0.055/-0.055), assuming normal (inverted) mass hierarchy.
Abstract: New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter theta_{23}. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57 x 10^{20} protons on target, T2K has fit the energy-dependent nu_mu oscillation probability to determine oscillation parameters. Marginalizing over the values of other oscillation parameters yields sin^2 (theta_{23}) = 0.514 +0.055/-0.056 (0.511 +- 0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Delta m^2_{32} = (2.51 +- 0.10) x 10^{-3} eV^2/c^4 (inverted hierarchy: Delta m^2_{13} = (2.48 +- 0.10) x 10^{-3} eV^2/c^4). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.

189 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe directed searches for continuous gravitational waves in data from the sixth LIGO science data run, where the targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars.
Abstract: We describe directed searches for continuous gravitational waves in data from the sixth LIGO science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of ten. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering F-statistic. We found no credible gravitational-wave signals. We set 95% confidence upper limits as strong (low) as $4\times10^{-25}$ on intrinsic strain, $2\times10^{-7}$ on fiducial ellipticity, and $4\times10^{-5}$ on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.

73 citations


Journal ArticleDOI
TL;DR: In this paper, the physics potential of the T2K long-baseline neutrino oscillation experiment is evaluated for CP violation in neutrinos, non-maximal, and mass hierarchy measurements.
Abstract: The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle $\theta_{13}$ have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal $\sin^22\theta_{23}$, the octant of $\theta_{23}$, and the mass hierarchy, in addition to the measurements of $\delta_{CP}$, $\sin^2\theta_{23}$, and $\Delta m^2_{32}$, for various combinations of $ u$-mode and \(\bar{ u}\)-mode data-taking. With an exposure of $7.8\times10^{21}$~protons-on-target, T2K can achieve 1-$\sigma$ resolution of 0.050(0.054) on $\sin^2\theta_{23}$ and $0.040(0.045)\times10^{-3}~\rm{eV}^2$ on $\Delta m^2_{32}$ for 100\%(50\%) neutrino beam mode running assuming $\sin^2\theta_{23}=0.5$ and $\Delta m^2_{32} = 2.4\times10^{-3}$ eV$^2$. T2K will have sensitivity to the CP-violating phase $\delta_{\rm{CP}}$ at 90\% C.L. or better over a significant range. For example, if $\sin^22\theta_{23}$ is maximal (i.e $\theta_{23}$=$45^\circ$) the range is $-115^\circ<\delta_{\rm{CP}}<-60^\circ$ for normal hierarchy and $+50^\circ<\delta_{\rm{CP}}<+130^\circ$ for inverted hierarchy. When T2K data is combined with data from the NO$ u$A experiment, the region of oscillation parameter space where there is sensitivity to observe a non-zero $\delta_{CP}$ is substantially increased compared to if each experiment is analyzed alone.

38 citations


Journal ArticleDOI
TL;DR: The NINJA-2 project as discussed by the authors employed 60 complete binary black hole hybrid waveforms consisting of a numerical portion modeling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral.
Abstract: The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We also perform a large-scale monte-carlo study to assess the ability to recover each of the 60 hybrid waveforms with early Advanced LIGO and Advanced Virgo sensitivity curves. Our results predict that early Advanced LIGO and Advanced Virgo will have a volume-weighted average sensitive distance of 300Mpc (1Gpc) for $10M_{\odot}+10M_{\odot}$ ($50M_{\odot}+50M_{\odot}$) binary black hole coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. [Abstract abridged for ArXiv, full version in PDF]

33 citations



Journal ArticleDOI
TL;DR: In this article, the authors present an implementation of the $\mathcal{F}$-statistic to carry out the first search in data from the Virgo laser interferometric gravitational wave detector for periodic gravitational waves from a priori unknown, isolated rotating neutron stars.
Abstract: We present an implementation of the $\mathcal{F}$-statistic to carry out the first search in data from the Virgo laser interferometric gravitational wave detector for periodic gravitational waves from a priori unknown, isolated rotating neutron stars. We searched a frequency $f_0$ range from 100 Hz to 1 kHz and the frequency dependent spindown $f_1$ range from $-1.6\,(f_0/100\,{\rm Hz}) \times 10^{-9}\,$ Hz/s to zero. A large part of this frequency - spindown space was unexplored by any of the all-sky searches published so far. Our method consisted of a coherent search over two-day periods using the $\mathcal{F}$-statistic, followed by a search for coincidences among the candidates from the two-day segments. We have introduced a number of novel techniques and algorithms that allow the use of the Fast Fourier Transform (FFT) algorithm in the coherent part of the search resulting in a fifty-fold speed-up in computation of the $\mathcal{F}$-statistic with respect to the algorithm used in the other pipelines. No significant gravitational wave signal was found. The sensitivity of the search was estimated by injecting signals into the data. In the most sensitive parts of the detector band more than 90% of signals would have been detected with dimensionless gravitational-wave amplitude greater than $5 \times 10^{-24}$.

29 citations