scispace - formally typeset
Search or ask a question

Showing papers by "Christian D. Ott published in 2010"


Proceedings ArticleDOI
12 Aug 2010
TL;DR: In this paper, the authors discuss results from simulations of black hole formation in failing core-collapse supernovae performed with the code GR1D, a new open-source Eulerian spherically-symmetric general-relativistic hydrodynamics code.
Abstract: We discuss results from simulations of black hole formation in failing core-collapse supernovae performed with the code GR1D, a new open-source Eulerian spherically-symmetric general-relativistic hydrodynamics code. GR1D includes rotation in an approximate way (1.5D) comes with multiple finite-temperature nuclear equations of state (EOS), and treats neutrinos in the post-core-bounce phase via a 3-flavor leakage scheme and a heating prescription. We chose the favored K_0 = 220 MeV-variant of the Lattimer & Swesty (1990) EOS and present collapse calculations using the progenitor models of Limongi & Chieffi (2006). We show that there is no direct (or “prompt”) black hole formation in the collapse of ordinary massive stars (8M_☉ ≲ M_(ZAMS) ≲ 100 M_☉) present first results from black hole formation simulations that include rotation.

1 citations


Proceedings ArticleDOI
TL;DR: In this article, the authors discuss results from simulations of black hole formation in failing core-collapse supernovae performed with the code GR1D, a new open-source Eulerian spherically-symmetric general-relativistic hydrodynamics code.
Abstract: We discuss results from simulations of black hole formation in failing core-collapse supernovae performed with the code GR1D, a new open-source Eulerian spherically-symmetric general-relativistic hydrodynamics code. GR1D includes rotation in an approximate way (1.5D), comes with multiple finite-temperature nuclear equations of state (EOS), and treats neutrinos in the post-core-bounce phase via a 3-flavor leakage scheme and a heating prescription. We chose the favored K_0=220 MeV-variant of the Lattimer & Swesty (1990) EOS and present collapse calculations using the progenitor models of Limongi & Chieffi (2006). We show that there is no direct (or ``prompt'') black hole formation in the collapse of ordinary massive stars (8 M_Sun ~< M_ZAMS ~< 100 M_Sun) and present first results from black hole formation simulations that include rotation.

1 citations