scispace - formally typeset

Author

D. P. Acharjya

Bio: D. P. Acharjya is an academic researcher from VIT University. The author has contributed to research in topic(s): Rough set & Information system. The author has an hindex of 14, co-authored 42 publication(s) receiving 492 citation(s).

Papers
More filters
Journal ArticleDOI
TL;DR: The comparative analysis is carried out over financial bankruptcy data set of Greek industrial bank ETEVA and it is concluded that rough computing techniques provide better accuracy 88.2% as compared to statistical techniques whereas hybridized computing techniques provides still better accuracy 94.1%.
Abstract: Information and technology revolution has brought a radical change in the way data are collected. The data collected is of no use unless some useful information is derived from it. Therefore, it is essential to think of some predictive analysis for analyzing data and to get meaningful information. Much research has been carried out in the direction of predictive data analysis starting from statistical techniques to intelligent computing techniques and further to hybridize computing techniques. The prime objective of this paper is to make a comparative analysis between statistical, rough computing, and hybridized techniques. The comparative analysis is carried out over financial bankruptcy data set of Greek industrial bank ETEVA. It is concluded that rough computing techniques provide better accuracy 88.2% as compared to statistical techniques whereas hybridized computing techniques provides still better accuracy 94.1% as compared to rough computing techniques.

58 citations

Proceedings ArticleDOI
16 Oct 2014
TL;DR: The detailed work done in developing a system which can be used for the purpose of opinion analysis of a product or a service, which access the public tweets by API and filters them for Samsung Galaxy is explained.
Abstract: In this paper we have explained the detailed work done in developing a system which can be used for the purpose of opinion analysis of a product or a service. The system readily processes the tweets by pulling data from tweeter posts, preprocessing it and connecting to Alchemy API by REST call method. and showing the result graphically. We have given the analysis for the product Samsung Galaxy Our proposed system access the public tweets by API and filters them for Samsung Galaxy. The analysis is being carried out as to classify the sentiment as positive, negative or neutral.

47 citations

Journal ArticleDOI
TL;DR: This paper hybridizes intuitionistic fuzzy set and rough set in combination with statistical feature extraction techniques and shows the overall accuracy of 98.3% is higher than the accuracy achieved by hybridizing fuzzy rough set model.
Abstract: Diagnosis of cancer is of prime concern in recent years. Medical imaging is used to analyze these diseases. But, these images contain uncertainties due to various factors and thus intelligent techniques are essential to process these uncertainties. This paper hybridizes intuitionistic fuzzy set and rough set in combination with statistical feature extraction techniques. The hybrid scheme starts with image segmentation using intuitionistic fuzzy set to extract the zone of interest and then to enhance the edges surrounding it. Further feature extraction using gray-level co-occurrence matrix is presented. Additionally, rough set is used to engender all minimal reducts and rules. These rules then fed into a classifier to identify different zones of interest and to check whether these points contain decision class value as either cancer or not. The experimental analysis shows the overall accuracy of 98.3% and it is higher than the accuracy achieved by hybridizing fuzzy rough set model.

44 citations

Book ChapterDOI
01 Jan 2018
TL;DR: The proposed intuitionistic possibilistic fuzzy c-mean technique has been applied to the clustering of the mammogram images for breast cancer detector of abnormal images and results in high accuracy with clustering and breast cancer detection.
Abstract: There is a partitioning of a data set X into c-clusters in clustering analysis. In 1984, fuzzy c-mean clustering was proposed. Later, fuzzy c-mean was used for the segmentation of medical images. Many researchers work to improve the fuzzy c-mean models. In our paper, we proposed a novel intuitionistic possibilistic fuzzy c-mean algorithm. Possibilistic fuzzy c-mean and intuitionistic fuzzy c-mean are hybridized to overcome the problems of fuzzy c-mean. This proposed clustering approach holds the positive points of possibilistic fuzzy c-mean that will overcome the coincident cluster problem, reduces the noise and brings less sensitivity to an outlier. Another approach of intuitionistic fuzzy c-mean improves the basics of fuzzy c-mean by using intuitionistic fuzzy sets. Our proposed intuitionistic possibilistic fuzzy c-mean technique has been applied to the clustering of the mammogram images for breast cancer detector of abnormal images. The experiments result in high accuracy with clustering and breast cancer detection.

35 citations

Journal ArticleDOI
TL;DR: It was concluded that the possibilistic exponential fuzzy c-means segmentation algorithm endorsed for additional efficient for accurate detection of breast tumours to assist for the early detection.
Abstract: Different fuzzy segmentation methods were used in medical imaging from last two decades for obtaining better accuracy in various approaches like detecting tumours etc. Well-known fuzzy segmentations like fuzzy c-means (FCM) assign data to every cluster but that is not realistic in few circumstances. Our paper proposes a novel possibilistic exponential fuzzy c-means (PEFCM) clustering algorithm for segmenting medical images. This new clustering algorithm technology can maintain the advantages of a possibilistic fuzzy c-means (PFCM) and exponential fuzzy c-mean (EFCM) clustering algorithms to maximize benefits and reduce noise/outlier influences. In our proposed hybrid possibilistic exponential fuzzy c-mean segmentation approach, exponential FCM intention functions are recalculated and that select data into the clusters. Traditional FCM clustering process cannot handle noise and outliers so we require being added in clusters due to the reasons of common probabilistic constraints which give the total of membership’s degree in every cluster to be 1. We revise possibilistic exponential fuzzy clustering (PEFCM) which hybridize possibilistic method over exponential fuzzy c-mean segmentation and this proposed idea partition the data filters noisy data or detects them as outliers. Our result analysis by PEFCM segmentation attains an average accuracy of 97.4% compared with existing algorithms. It was concluded that the possibilistic exponential fuzzy c-means segmentation algorithm endorsed for additional efficient for accurate detection of breast tumours to assist for the early detection.

34 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Some decision making methods based on (fuzzy) soft sets, rough soft sets and soft rough sets are reviewed, providing several novel algorithms in decision making problems by combining these kinds of hybrid models.
Abstract: Fuzzy set theory, rough set theory and soft set theory are all generic mathematical tools for dealing with uncertainties. There has been some progress concerning practical applications of these theories, especially, the use of these theories in decision making problems. In the present article, we review some decision making methods based on (fuzzy) soft sets, rough soft sets and soft rough sets. In particular, we provide several novel algorithms in decision making problems by combining these kinds of hybrid models. It may be served as a foundation for developing more complicated soft set models in decision making.

158 citations

Journal ArticleDOI
TL;DR: The basic objective of this paper is to explore the potential impact of big data challenges, open research issues, and various tools associated with it and provide a platform to explore big data at numerous stages.
Abstract: A huge repository of terabytes of data is generated each day from modern information systems and digital technolo-gies such as Internet of Things and cloud computing. Analysis of these massive data requires a lot of efforts at multiple levels to extract knowledge for decision making. Therefore, big data analysis is a current area of research and development. The basic objective of this paper is to explore the potential impact of big data challenges, open research issues, and various tools associated with it. As a result, this article provides a platform to explore big data at numerous stages. Additionally, it opens a new horizon for researchers to develop the solution, based on the challenges and open research issues.

137 citations

Journal ArticleDOI
TL;DR: The basic concepts, operations and characteristics on the rough set theory are introduced, and then the extensions of rough set model, the situation of their applications, some application software and the key problems in applied research for the roughSet theory are presented.
Abstract: After probability theory, fuzzy set theory and evidence theory, rough set theory is a new mathematical tool for dealing with vague, imprecise, inconsistent and uncertain knowledge. In recent years, the research and applications on rough set theory have attracted more and more researchers' attention. And it is one of the hot issues in the artificial intelligence field. In this paper, the basic concepts, operations and characteristics on the rough set theory are introduced firstly, and then the extensions of rough set model, the situation of their applications, some application software and the key problems in applied research for the rough set theory are presented.

129 citations

Journal ArticleDOI
TL;DR: The analysis of recent advances in genetic algorithms is discussed and the well-known algorithms and their implementation are presented with their pros and cons with the aim of facilitating new researchers.
Abstract: In this paper, the analysis of recent advances in genetic algorithms is discussed. The genetic algorithms of great interest in research community are selected for analysis. This review will help the new and demanding researchers to provide the wider vision of genetic algorithms. The well-known algorithms and their implementation are presented with their pros and cons. The genetic operators and their usages are discussed with the aim of facilitating new researchers. The different research domains involved in genetic algorithms are covered. The future research directions in the area of genetic operators, fitness function and hybrid algorithms are discussed. This structured review will be helpful for research and graduate teaching.

113 citations

Journal ArticleDOI
TL;DR: A hybrid principal component analysis (PCA)-firefly based machine learning model to classify intrusion detection system (IDS) datasets and experimental results confirm the fact that the proposed model performs better than the existing machine learning models.
Abstract: The enormous popularity of the internet across all spheres of human life has introduced various risks of malicious attacks in the network. The activities performed over the network could be effortlessly proliferated, which has led to the emergence of intrusion detection systems. The patterns of the attacks are also dynamic, which necessitates efficient classification and prediction of cyber attacks. In this paper we propose a hybrid principal component analysis (PCA)-firefly based machine learning model to classify intrusion detection system (IDS) datasets. The dataset used in the study is collected from Kaggle. The model first performs One-Hot encoding for the transformation of the IDS datasets. The hybrid PCA-firefly algorithm is then used for dimensionality reduction. The XGBoost algorithm is implemented on the reduced dataset for classification. A comprehensive evaluation of the model is conducted with the state of the art machine learning approaches to justify the superiority of our proposed approach. The experimental results confirm the fact that the proposed model performs better than the existing machine learning models.

102 citations