scispace - formally typeset
Search or ask a question

Showing papers by "David C. Hartnett published in 1997"


Journal ArticleDOI
TL;DR: The results confirm the high mycorrhizal dependency and growth responsiveness of dominant prairie grasses, and indicate that differential growth and demographic responses to mycor rhizal colonization among species may significantly affect plant productivity and species relative abundances in tallgrass prairie.
Abstract: Experimental microcosms (40 X 52 X 32 cm) containing an assemblage of eight tallgrass prairie grass and forb species in native prairie soil were maintained under mycorrhizal (untreated control) or mycorrhizal-suppressed (fungicide-treated) conditions to examine plant growth, demographic, and community responses to mycorrhizal symbiosis. The fungicide benomyl successfully reduced mycorrhizal root colonization in the fungicide-treated microcosms to only 6.4% (an 83% reduction relative to mycorrhizal controls). Suppression of mycorrhizas resulted in a 31% reduction in total net aboveground plant production and changes in the relative production of C4 and C3 plants. The C4 tallgrasses Andropogon gerardi and Sorghastrum nutans produced less plant biomass in the fungicide-treated microcosms, and had a greater ratio of reproductive to vegetative biomass. Cool-season C3 grasses, Koeleria pyramidata and Poa pratensis accumulated more biomass and were a significantly greater proportion of total community biomass in mycorrhizal-suppressed microcosms. Forbs showed variable responses to mycorrhizal suppression. The two legumes Amorpha canescens and Dalea purpurea had significantly lower survivorship in the fungicide-treated microcosms, relative to the controls. The results confirm the high mycorrhizal dependency and growth responsiveness of dominant prairie grasses, and indicate that differential growth and demographic responses to mycorrhizal colonization among species may significantly affect plant productivity and species relative abundances in tallgrass prairie.

108 citations


Book ChapterDOI
01 Jan 1997
TL;DR: The defining period of coevolution among Great Plains plant and ungulate species occurred during the past 12,000 years (Mack and Thompson 1982, Axelrod 1985) as discussed by the authors.
Abstract: The defining period of coevolution among Great Plains plant and ungulate species occurred during the past 12,000 years (Mack and Thompson 1982, Axelrod 1985). In the late Pleistocene and early Holocene, a diverse array of large grazers and browsers were reduced to a much smaller group of ungulate species represented by bison (Bison bison), pronghorn (Antilocapra americana), deer (Odocoileus hemionus and O. virginianus), and elk (Cervus canadensis). These changes occurred in the presence of nomadic humans from the Asian steppe who were immigrating to the Great Plains during the same time. The landscape was characterized by gently rolling interfluvial surfaces covered with perennial herbaceous vegetation. These exposed grasslands were periodically interrupted by more protected wetland, riparian woodland, or scarp woodland habitats. Although wetlands and woodlands occupied less than 7 and less than 3% of the Great Plains, respectively (National Wetlands Inventory, and Nebraska Natural Heritage Program data bases), the heterogeneity that they created at landscape scales played a major role in determining the distribution and abundance of native ungulates. Extreme cold and heat, drought, flood, fire, wind, and countless biotic interactions caused locally short-term fluctuations in ungulate populations and long-term shifts in landscape features. These dynamic temporal changes were overlayed on a multi-scale spatial mosaic. Native ungulates were adapted to this landscape.

70 citations


Journal ArticleDOI
TL;DR: The results show that forb responses to ungulates in tallgrass prairie are complex and vary significantly among plant species, ungulate species, fire regimes, and plant life history stages.
Abstract: Forb populations were sampled on Kansas tallgrass prairie to examine the effects of native (bison) and domestic (cattle) ungulates on plant growth, reproduction, and species abundances. Five locally and regionally abundant native tallgrass prairie perennials, Baptisia bracteata, Oenothera speciosa, Vernonia baldwinii, Solidago missouriensis, and Salvia azurea, were selected for study. Replicate watershed-level treatments included three grazing regimes (ungrazed, grazed by cattle, and grazed by bison), and two spring fire frequencies (annually burned and burned at 4-yr intervals). The results show that forb responses to ungulates in tallgrass prairie are complex and vary significantly among plant species, ungulate species, fire regimes, and plant life history stages. Some forbs (e.g., B. bracteata, O. speciosa, and V. baldwinii) increased in growth and reproduction in grazed sites, indicating competitive release in response to selective grazing of the dominant warm-season matrix grasses. Forbs that reduced performance in grazed sites are likely negatively affected by disturbances generated by ungulate nongrazing activities, because none of the forbs studied were directly consumed by bison or cattle. Large grazers had no detectable effect on the frequency of plant damage by other herbivores or pathogens. Significant effects of grazers on patterns of flowering and seed production were not congruent with their effects on population densities, indicating that variation in sexual reproduction plays a minor role in regulating local population abundances. Furthermore, the native and domestic ungulates differ significantly in their effects on forb growth and reproduction.

70 citations


01 Jan 1997
TL;DR: Forb populations were sampled on Kansas tallgrass prairie to examine the effects of native (bison) and domestic (cattle) ungulates on plant growth, reproduction, and species abundances as mentioned in this paper.
Abstract: Forb populations were sampled on Kansas tallgrass prairie to examine the effects of native (bison) and domestic (cattle) ungulates on plant growth, reproduction, and species abundances. Five locally and regionally abundant native tallgrass prairie perennials, Baptisia bracteata, Oenothera speciosa, Vernonia baldwinii, Solidago missouriensis, and Salvia azurea, were selected for study. Replicate watershed-level treatments included three grazing regimes (ungrazed, grazed by cattle, and grazed by bison), and two spring fire frequencies (annually burned and burned at 4-yr intervals). The results show that forb responses to ungulates in tallgrass prairie are complex and vary significantly among plant species, ungulate species, fire regimes, and plant life history stages. Some forbs (e.g., B. bracteata, O. speciosa,and V. baldwinii) increased in growth and reproduction in grazed sites, indicating competitive release in response to selective grazing of the dominant warmseason matrix grasses. Forbs that reduced performance in grazed sites are likely negatively affected by disturbances generated by ungulate nongrazing activities, because none of the forbs studied were directly consumed by bison or cattle. Large grazers had no detectable effect on the frequency of plant damage by other herbivores or pathogens. Significant effects of grazers on patterns of flowering and seed production were not congruent with their effects on population densities, indicating that variation in sexual reproduction plays a minor role in regulating local population abundances. Furthermore, the native and domestic ungulates differ significantly in their effects on forb growth and reproduction.

68 citations