scispace - formally typeset
Search or ask a question

Showing papers by "David Fortus published in 2021"


Journal ArticleDOI
TL;DR: This paper found that most students tracked energy successfully across systems, and did not violate energy conservations when explaining phenomena, that is, progressed towards a qualitative understanding of conservation, and in fact a more productive pathway towards conservation may exist in the transfer-only approach.
Abstract: Energy conservation is a fundamental concept in physics and across the sciences as it provides a lens for investigating a wide range of phenomena. Research into energy learning progressions has shown that a majority of students across K-12 struggle with energy conservation. These studies characterize students’ learning progressions as starting from energy being manifest in different forms. Research suggests that learning progressions that begin with the idea of forms only lead to an understanding of conservation for a minority of students. Thus, the question arises whether there are alternative, more productive pathways towards conservation than going through forms. We investigated to what extent students progress towards conservation if they are taught in a transfer-only approach to teaching energy that does not require forms. Drawing on interviews from N = 30 students across different time points in a 10 week transfer-only unit, we found that at the end of the unit, most students tracked energy successfully across systems, and did not violate energy conservations when explaining phenomena, that is, progressed towards a qualitative understanding of conservation. Our results imply that energy learning progressions do not have to go through forms and in fact a more productive pathway towards conservation may exist in the transfer-only approach.

12 citations


Journal ArticleDOI
TL;DR: In this paper, the changes to students' motivation to engage with science that occurred over a school year and investigated what drove these changes, finding that any shift in students' mastery orientation towards science was not related to their perceptions of the environmental emphases, but rather to the differences they perceived between the environment and themselves.
Abstract: Studies that investigated the relations between the environment and students’ motivation to engage with science have typically looked at the state of students’ motivation at a given time and its relations with the environment. This study took a different perspective; it looked at the changes to students’ motivation to engage with science that occurred over a school year and investigated what drove these changes. According to goal orientation theory, students typically shift their personal goal orientations towards their perceptions of the goal emphases of their environment. For example, if students perceive their science teachers as highly emphasizing mastery orientation, they are likely to become more mastery oriented towards science with time. However, different environmental influences, such as parents, peer, teachers, and general school culture, push and pull the students in different directions. Using survey data gathered from Israeli adolescents that came from low SES backgrounds, we demonstrated that any shift in students’ mastery orientation towards science was not related to their perceptions of the environmental emphases, but rather to the differences they perceived between the environment and themselves. In addition, we identified which environmental influences were stronger predictors of shifts in students’ mastery orientation towards science. These results help to clarify the influence of the environment on students’ motivation to engage with science, can help understand why interventions may sometimes lead to counter-intuitive results, and can provide the basis for a model that may be useful for predicting how students’ motivation for science may change over a school year.

10 citations