scispace - formally typeset
Search or ask a question
Author

Earl M. Bednar

Bio: Earl M. Bednar is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 2 citations.

Papers
More filters
01 Aug 2011
TL;DR: An improved methodology for classifying players (identifying deviant players such as terrorists) through multivariate analysis of data from avatar characteristics and behaviors in massive multiplayer online games (MMOGs) is developed.
Abstract: : The purpose of our research is to develop an improved methodology for classifying players (identifying deviant players such as terrorists) through multivariate analysis of data from avatar characteristics and behaviors in massive multiplayer online games (MMOGs). To build our classification models, we developed three significant enhancements to the standard Generalized Regression Neural Networks (GRNN) modeling method. The first enhancement is a feature selection technique based on GRNNs, allowing us to tailor our feature set to be best modeled by GRNNs. The second enhancement is a hybrid GRNN which allows each feature to be modeled by a GRNN tailored to its data type. The third enhancement is a spread estimation technique for large data sets that is faster than exhaustive searches, yet more accurate than a standard heuristic. We applied our new techniques to a set of data from the MMOG, Everquest II, to identify deviant players ('gold farmers'). The identification of gold farmers is similar to labeling terrorists in that the ratio of gold farmer to standard player is extremely small, and the in-game behaviors for a gold farmer have detectable differences from a standard player. Our results were promising given the difficulty of the classification process, primarily the extremely unbalanced data set with a small number of observations from the class of interest. As a screening tool our method identifies a significantly reduced set of avatars and associated players with a much improved probability of containing a number of players displaying deviant behaviors. With further efforts at improving computing efficiencies to allow inclusion of additional features and observations with our framework, we expect even better results.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Three classification algorithms, multi-layer perceptron (MLP), radial basis function (RBF) and probabilistic neural networks (PNN), are applied for the purpose of detection and classification of breast cancer and PNN was the best classifiers by achieving accuracy rates of 100 and 97.66 % in both training and testing phases, respectively.
Abstract: Among cancers, breast cancer causes second most number of deaths in women. To reduce the high number of unnecessary breast biopsies, several computer-aided diagnosis systems have been proposed in the last years. These systems help physicians in their decision to perform a breast biopsy on a suspicious lesion seen in a mammogram or to perform a short-term follow-up examination instead. In clinical diagnosis, the use of artificial intelligent techniques as neural networks has shown great potential in this field. In this paper, three classification algorithms, multi-layer perceptron (MLP), radial basis function (RBF) and probabilistic neural networks (PNN), are applied for the purpose of detection and classification of breast cancer. Decision making is performed in two stages: training the classifiers with features from Wisconsin Breast Cancer database and then testing. The performance of the proposed structure is evaluated in terms of sensitivity, specificity, accuracy and ROC. The results revealed that PNN was the best classifiers by achieving accuracy rates of 100 and 97.66 % in both training and testing phases, respectively. MLP was ranked as the second classifier and was capable of achieving 97.80 and 96.34 % classification accuracy for training and validation phases, respectively, using scaled conjugate gradient learning algorithm. However, RBF performed better than MLP in the training phase, and it has achieved the lowest accuracy in the validation phase.

104 citations

Journal ArticleDOI
TL;DR: The forms, locations, methods of analyzing and exploiting Big Data, and current research on Big Data are examined, which concerns a myriad of tangential issues, from privacy to analysis methods that will be overviewed.
Abstract: “Big Data” is an emerging term used with business, engineering, and other domains. Although Big Data is a popular term used today, it is not a new concept. However, the means in which data can be collected is more readily available than ever, which makes Big Data more relevant than ever because it can be used to improve decisions and insights within the domains it is used. The term Big Data can be loosely defined as data that is too large for traditional analysis methods and techniques. In this article, varieties of prominent but loose definitions for Big Data are shared. In addition, a comprehensive overview of issues related to Big Data is summarized. For example, this paper examines the forms, locations, methods of analyzing and exploiting Big Data, and current research on Big Data. Big Data also concerns a myriad of tangential issues, from privacy to analysis methods that will also be overviewed. Best practices will further be considered. Additionally, the epistemology of Big Data and its history will be examined, as well as technical and societal problems existing with Big Data.

32 citations