scispace - formally typeset
Search or ask a question
Author

F. M. Lea

Bio: F. M. Lea is an academic researcher. The author has contributed to research in topics: Clinker (cement) & Metakaolin. The author has an hindex of 1, co-authored 1 publications receiving 1596 citations.

Papers
More filters
Book
01 Jan 1998
TL;DR: The history of calcareous cements and Portland cements can be found in this paper, where the structure and cementing qualities of cement compounds the constitution of Portland cement, the burning of Portland Cement, the hydration of PortlandCement, resistance of concrete to natural destructive agencies physical and mechanical properties of Portland cement pozzolanas and pozzolanic cements cements made from blast furnace slag high alumina cement some special cements, and cement properties cement admixtures concrete aggregates.
Abstract: The history of calcareous cements Portland cements - classification, raw materials and processes of manufacture cement components and their phase relations the structure and cementing qualities of cement compounds the constitution of Portland cement the burning of Portland cement the hydration of Portland cement the setting and hardening of Portland cement resistance of concrete to natural destructive agencies physical and mechanical properties of Portland cement pozzolanas and pozzolanic cements cements made from blast furnace slag high alumina cement some special cements and cement properties cement admixtures concrete aggregates.

1,701 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, four promising alternative binders available as alternatives to Portland cement are discussed, namely calcium aluminate cement, calcium sulfoaluminate cements, alkali-activated binders, and supersulfated cements.
Abstract: There is a burgeoning interest in the development, characterization, and implementation of alternatives to Portland cement as a binder in concrete. The construction materials industry is under increasing pressure to reduce the energy used in production of Portland cement clinker and the associated greenhouse gas emissions. Further, Portland cement is not the ideal binder for all construction applications, as it suffers from durability problems in particularly aggressive environments. Several alternative binders have been available for almost as long as Portland cement, yet have not been extensively used, and new ones are being developed. In this paper, four promising binders available as alternatives to Portland cement are discussed, namely calcium aluminate cement, calcium sulfoaluminate cement, alkali-activated binders, and supersulfated cements. The history of the binders, their compositions and reaction mechanisms, benefits and drawbacks, unanswered questions, and primary challenges are described.

1,237 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the work carried out on the chemical reaction, the source materials, and the factor affecting geopolymerization, and demonstrate that certain mix compositions and reaction conditions such as Al2O3/SiO2, alkali concentration, curing temperature with curing time, water/solid ratio and pH significantly influences the formation and properties of a geopolymers.
Abstract: Geopolymerization is a developing field of research for utilizing solid waste and by-products. It provides a mature and cost-effective solution to many problems where hazardous residue has to be treated and stored under critical environmental conditions. Geopolymer involves the silicates and aluminates of by-products to undergo process of geopolymerization. It is environmentally friendly and need moderate energy to produce. This review presents the work carried out on the chemical reaction, the source materials, and the factor affecting geopolymerization. Literature demonstrates that certain mix compositions and reaction conditions such as Al2O3/SiO2, alkali concentration, curing temperature with curing time, water/solid ratio and pH significantly influences the formation and properties of a geopolymer. It is utilized to manufacture precast structures and non-structural elements, concrete pavements, concrete products and immobilization of toxic metal bearing waste that are resistant to heat and aggressive environment. Geopolymers gain 70% of the final strength in first 3–4 h of curing.

1,078 citations

Journal ArticleDOI
TL;DR: In this paper, the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash is discussed, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials.
Abstract: The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives fo...

862 citations

Journal ArticleDOI
TL;DR: A review of one-part AAMs in terms of raw materials, activators, additives, mechanical and physical properties, curing mechanisms, hydration products, and environmental impacts can be found in this paper.
Abstract: Alkali-activated materials (AAM) are recognized as potential alternatives to ordinary Portland cement (OPC) in order to limit CO2 emissions as well as beneficiate several wastes into useful products. However, the alkali activation process involves concentrated aqueous alkali solutions, which are corrosive, viscous, and, as such, difficult to handle and not user friendly. Consequently, the development of so-called one-part or “just add water” AAM may have greater potential than the conventional two-part AAM, especially in cast-in-situ applications. One-part AAM involves a dry mix that consists of a solid aluminosilicate precursor, a solid alkali source, and possible admixtures to which water is added, similar to the preparation of OPC. The dry mix can be prepared at elevated temperatures to facilitate the reactivity of certain raw materials. This review discusses current studies of one-part AAMs in terms of raw materials, activators, additives, mechanical and physical properties, curing mechanisms, hydration products, and environmental impacts.

733 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of different proportions of ground granulated blast-furnace slag and activator content on the workability and strength properties of fly ash based geopolymer concrete was evaluated.
Abstract: Inclusion of ground granulated blast-furnace slag (GGBFS) with class F fly-ash can have a significant effect on the setting and strength development of geopolymer binders when cured in ambient temperature. This paper evaluates the effect of different proportions of GGBFS and activator content on the workability and strength properties of fly ash based geopolymer concrete. In this study, GGBFS was added as 0%, 10% and 20% of the total binder with variable activator content (40% and 35%) and sodium silicate to sodium hydroxide ratio (1.5–2.5). Significant increase in strength and some decrease in the workability were observed in geopolymer concretes with higher GGBFS and lower sodium silicate to sodium hydroxide ratio in the mixtures. Similar to OPC concrete, development of tensile strength correlated well with the compressive strength of ambient-cured geopolymer concrete. The predictions of tensile strength from compressive strength of ambient-cured geopolymer concrete using the ACI 318 and AS 3600 codes tend to be similar to that for OPC concrete. The predictions are more conservative for heat-cured geopolymer concrete than for ambient-cured geopolymer concrete.

590 citations