scispace - formally typeset
Search or ask a question

Showing papers by "François Bouchy published in 2023"


Journal ArticleDOI
TL;DR: The TOI-3235 b was first identified as a candidate from TESS photometry and confirmed with radial velocities from ESPRESSO and ground-based photometry from HATSouth, MEarthSouth, TRAPPIST-South, LCOGT, and ExTrA as mentioned in this paper .
Abstract: We present the discovery of TOI-3235 b, a short-period Jupiter orbiting an M dwarf with a stellar mass close to the critical mass at which stars transition from partially to fully convective. TOI-3235 b was first identified as a candidate from TESS photometry and confirmed with radial velocities from ESPRESSO and ground-based photometry from HATSouth, MEarth-South, TRAPPIST-South, LCOGT, and ExTrA. We find that the planet has a mass of 0.665 ± 0.025 M J and a radius of 1.017 ± 0.044 R J. It orbits close to its host star, with an orbital period of 2.5926 days but has an equilibrium temperature of ≈ 604 K, well below the expected threshold for radius inflation of hot Jupiters. The host star has a mass of 0.3939 ± 0.0030 M ☉, a radius of 0.3697 ± 0.0018 R ☉, an effective temperature of 3389 K, and a J-band magnitude of 11.706 ± 0.025. Current planet formation models do not predict the existence of gas giants such as TOI-3235 b around such low-mass stars. With a high transmission spectroscopy metric, TOI-3235 b is one of the best-suited giants orbiting M dwarfs for atmospheric characterization.

2 citations


Peer Review
17 Jul 2023
TL;DR: WASP-193b has a mass of Mp = 0.139 +/- 0.029 M_Jup and a radius of Rp = 1.058 R_ Jup as mentioned in this paper , translating into an extremely low density of rhop= 0.059 +\- 0.014 g/cm^3.
Abstract: Gas giants transiting bright nearby stars are stepping stones for our understanding of planetary system formation and evolution mechanisms. This paper presents a particularly interesting new specimen of this kind of exoplanet discovered by the WASP-South transit survey, WASP-193b. This planet completes an orbit around its Vmag = 12.2 F9 main-sequence host star every 6.25 d. Our analyses found that WASP-193b has a mass of Mp = 0.139 +/- 0.029 M_Jup and a radius of Rp = 1.464 +/- 0.058 R_ Jup, translating into an extremely low density of rhop = 0.059 +\- 0.014 g/cm^3. The planet was confirmed photometrically by the 0.6-m TRAPPIST-South, the 1.0-m SPECULOOS-South telescopes, and the TESS mission, and spectroscopically by the ESO-3.6-m/HARPS and Euler-1.2-m/CORALIE spectrographs. The combination of its large transit depth (dF~1.4 %), its extremely-low density, its high-equilibrium temperature (Teq = 1254 +/- 31 K), and the infrared brightness of its host star (magnitude Kmag=10.7) makes WASP-193b an exquisite target for characterization by transmission spectroscopy (transmission spectroscopy metric: TSM ~ 600). One single JWST transit observation would yield detailed insights into its atmospheric properties and planetary mass, within ~0.1 dex and ~1% (vs ~20% currently with radial velocity data) respectively.

Journal ArticleDOI
TL;DR: In this paper , the authors reported the discovery and validation of TOI-715 b, a 1.06-radius planet orbiting its nearby M4 host with a period of 19.5 days and a potential orbital period of 25.02.
Abstract: A new generation of observatories is enabling detailed study of exoplanetary atmospheres and the diversity of alien climates, allowing us to seek evidence for extraterrestrial biological and geological processes. Now is therefore the time to identify the most unique planets to be characterised with these instruments. In this context, we report on the discovery and validation of TOI-715 b, a $R_{\rm b}=1.55\pm 0.06\rm R_{\oplus }$ planet orbiting its nearby (42 pc) M4 host (TOI-715/TIC 271971130) with a period $P_{\rm b} = 19.288004_{-0.000024}^{+0.000027}$ days. TOI-715 b was first identified by TESS and validated using ground-based photometry, high-resolution imaging and statistical validation. The planet’s orbital period combined with the stellar effective temperature $T_{\rm eff}=3075\pm 75~\rm K$ give this planet an instellation $S_{\rm b} = 0.67_{-0.20}^{+0.15}~\rm S_\oplus$, placing it within the most conservative definitions of the habitable zone for rocky planets. TOI-715 b’s radius falls exactly between two measured locations of the M-dwarf radius valley; characterising its mass and composition will help understand the true nature of the radius valley for low-mass stars. We demonstrate TOI-715 b is amenable for characterisation using precise radial velocities and transmission spectroscopy. Additionally, we reveal a second candidate planet in the system, TIC 271971130.02, with a potential orbital period of $P_{02} = 25.60712_{-0.00036}^{+0.00031}$ days and a radius of $R_{02} = 1.066\pm 0.092\, \rm R_{\oplus }$, just inside the outer boundary of the habitable zone, and near a 4:3 orbital period commensurability. Should this second planet be confirmed, it would represent the smallest habitable zone planet discovered by TESS to date.