scispace - formally typeset
Search or ask a question

Showing papers by "Gautam Basu published in 2020"


Journal ArticleDOI
TL;DR: This review has explored the conformational landscape of several termini capped mono-(2-, 3-, 4-, and 5-) substituted proline derivatives in the Cambridge Structural Database, correlating observed conformations with the nature of substituents and deciphering the underlying interactions for the observed structural biases.
Abstract: The cyclic side chain of the amino acid proline confers unique conformational restraints on its backbone and side chain dihedral angles. This affects two equilibria-one at the backbone (cis/trans) and the other at the side chain (endo/exo). Substitutions on the proline ring impose additional steric and stereoelectronic effects that can further modulate both these equilibria, which in turn can also affect the backbone dihedral angle (ϕ, ψ) preferences. In this review, we have explored the conformational landscape of several termini capped mono-(2-, 3-, 4-, and 5-) substituted proline derivatives in the Cambridge Structural Database, correlating observed conformations with the nature of substituents and deciphering the underlying interactions for the observed structural biases. The impact of incorporating these derivatives within model peptides and proteins are also discussed for selected cases. Several of these substituents have been used to introduce bioorthogonal functionality and modulate structure-specific ligand recognition or used as spectroscopic probes. The incorporation of these diversely applicable functional groups, coupled with their ability to define an amino acid conformation via stereoelectronic effects, have a broad appeal among chemical biologists, molecular biophysicists, and medicinal chemists.

33 citations


Journal ArticleDOI
17 Sep 2020-PLOS ONE
TL;DR: The experimental data suggest a dual DNA binding mode by thiazole-coumarin (TC) conjugate, a recently reported hemicyanine-based turn-on red fluorescent probe, using a number of biophysical techniques and a series of short oligonucleotides.
Abstract: Turn-on fluorescent probes show enhanced emission upon DNA binding, advocating their importance in imaging cellular DNA. We have probed the DNA binding mode of thiazole-coumarin (TC) conjugate, a recently reported hemicyanine-based turn-on red fluorescent probe, using a number of biophysical techniques and a series of short oligonucleotides. TC exhibited increased fluorescence anisotropy and decreased absorbance (~50%) at low [DNA]/[TC] ratio. Although the observed hypochromicity and the saturating value of [DNA base pair]:[TC] ratio is consistent with a previous study that suggested intercalation to be the DNA binding mode of TC, a distinctly different and previously unreported binding mode was observed at higher ratios of [DNA]:[TC]. With further addition of DNA, only oligonucleotides containing AnTn or (AT)n stretches showed further change-decreased hypochromicity, red shifted absorption peaks and concomitant fluorescence enhancement, saturating at about 1:1 [DNA]: [TC]. 1H-NMR chemical shift perturbation patterns and H1'-H6/H8 NOE cross-peaks of the 1:1 complex indicated minor groove binding by TC. ITC showed the 1:1 DNA binding event to be endothermic (ΔH° ~ 2 kcal/mol) and entropy driven (ΔS° ~ 32 cal/mol/K). Taken together, the experimental data suggest a dual DNA binding mode by TC. At low [DNA]/[TC] ratio, the dominant mode is intercalation. This switches to minor groove binding at higher [DNA]/[TC], only for sequences containing AnTn or (AT)n stretches. Turn-on fluorescence results only in the previously unreported minor groove bound state. Our results allow a better understanding of DNA-ligand interaction for the newly reported turn-on probe TC.

5 citations