scispace - formally typeset
Search or ask a question

Showing papers by "George N. Wong published in 2023"


Journal ArticleDOI
TL;DR: In this paper , the authors reconstruct the first images of the quasar NRAO 530 with the Event Horizon Telescope (EHT) at an unprecedented angular resolution of ∼20 μas, both in total intensity and in linear polarization.
Abstract: We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5−7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of ∼20 μas, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of ∼5%–8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 μas along a position angle ∼ −28°. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin.

1 citations


12 Jul 2023
TL;DR: In this article , a simple polarimetric observable that quantifies the magnetic field helicity in a near-horizon image of a supermassive black hole was shown to depend on the sign of the electromagnetic energy flux.
Abstract: In 1977, Blandford and Znajek showed that the electromagnetic field surrounding a rotating black hole can harvest its spin energy and use it to power a collimated astrophysical jet, such as the one launched from the center of the elliptical galaxy M87. Today, interferometric observations with the Event Horizon Telescope (EHT) are delivering high-resolution, event-horizon-scale, polarimetric images of the supermassive black hole M87* at the jet launching point. These polarimetric images offer an unprecedented window into the electromagnetic field structure around a black hole. In this paper, we show that a simple polarimetric observable that quantifies the magnetic field helicity -- the sign of $\angle\beta_2$ in a near-horizon image -- depends on the sign of the electromagnetic energy flux and therefore provides a direct probe of black hole energy extraction. In Boyer-Lindquist coordinates, the Poynting flux for axisymmetric electromagnetic fields is proportional to the product $B^\phi B^r$. The polarimetric observable $\angle\beta_2$ likewise depends on the ratio $B^\phi/B^r$, thereby enabling an observer to experimentally determine the direction of electromagnetic energy flow in the near-horizon environment. Data from the 2017 EHT observations of M87* are consistent with electromagnetic energy outflow. Currently envisioned multi-frequency observations of M87* will achieve higher dynamic range and angular resolution, and hence deliver measurements of $\angle\beta_2$ closer to the event horizon as well as better constraints on Faraday rotation. Such observations will enable a definitive test for energy extraction from the black hole M87*.

27 Mar 2023
TL;DR: In this article , the authors present an extended version of the grmonty code with non-thermal electron distribution functions, namely the $\kappa$ and power-law DFs.
Abstract: Low-luminosity active galactic nuclei are strong sources of X-ray emission produced by Compton scattering originating from the accretion flows surrounding their supermassive black holes. The shape and energy of the resulting spectrum depend on the shape of the underlying electron distribution function (DF). In this work, we present an extended version of the grmonty code, called $\kappa$monty. The grmonty code previously only included a thermal Maxwell J\"utner electron distribution function. We extend the gromty code with non-thermal electron DFs, namely the $\kappa$ and power-law DFs, implement Cartesian Kerr-Schild coordinates, accelerate the code with MPI, and couple the code to the non-uniform AMR grid data from the GRMHD code BHAC. For the Compton scattering process, we derive two sampling kernels for both distribution functions. Finally, we present a series of code tests to verify the accuracy of our schemes. The implementation of non-thermal DFs opens the possibility of studying the effect of non-thermal emission on previously developed black hole accretion models.

07 Apr 2023
TL;DR: Mahakala as mentioned in this paper is a Python-based, modular, radiative ray-tracing code for curved space-times that uses the Cartesian Kerr-Schild coordinate system, which avoids numerical issues caused by the pole of spherical coordinates.
Abstract: We introduce Mahakala, a Python-based, modular, radiative ray-tracing code for curved space-times. We employ Google's JAX framework for accelerated automatic differentiation, which can efficiently compute Christoffel symbols directly from the metric, allowing the user to easily and quickly simulate photon trajectories through non-Kerr metrics. JAX also enables Mahakala to run in parallel on both CPUs and GPUs and achieve speeds comparable to C-based codes. Mahakala natively uses the Cartesian Kerr-Schild coordinate system, which avoids numerical issues caused by the"pole"of spherical coordinates. We demonstrate Mahakala's capabilities by simulating the 1.3 mm wavelength images (the wavelength of Event Horizon Telescope observations) of general relativistic magnetohydrodynamic simulations of low-accretion rate supermassive black holes. The modular nature of Mahakala allows us to easily quantify the relative contribution of different regions of the flow to image features. We show that most of the emission seen in 1.3 mm images originates close to the black hole. We also quantify the relative contribution of the disk, forward jet, and counter jet to 1.3 mm images.

Journal ArticleDOI
TL;DR: In this article , a selection of ray-tracing general relativistic radiative transfer (GRRT) codes were evaluated for accuracy and consistency in producing a sample of test images.
Abstract: Interpretation of resolved polarized images of black holes by the Event Horizon Telescope (EHT) requires predictions of the polarized emission observable by an Earth-based instrument for a particular model of the black hole accretion system. Such predictions are generated by general relativistic radiative transfer (GRRT) codes, which integrate the equations of polarized radiative transfer in curved spacetime. A selection of ray-tracing GRRT codes used within the EHT Collaboration is evaluated for accuracy and consistency in producing a selection of test images, demonstrating that the various methods and implementations of radiative transfer calculations are highly consistent. When imaging an analytic accretion model, we find that all codes produce images similar within a pixel-wise normalized mean squared error (NMSE) of 0.012 in the worst case. When imaging a snapshot from a cell-based magnetohydrodynamic simulation, we find all test images to be similar within NMSEs of 0.02, 0.04, 0.04, and 0.12 in Stokes I, Q, U, and V, respectively. We additionally find the values of several image metrics relevant to published EHT results to be in agreement to much better precision than measurement uncertainties.

11 Jul 2023
TL;DR: In this paper , a gain-robust interferometric quantity was constructed to detect the transition between the weakly lensed accretion flow image and the strongly lensed photon ring.
Abstract: Images of supermassive black hole accretion flows contain features of both curved spacetime and plasma structure. Inferring properties of the spacetime from images requires modeling the plasma properties, and vice versa. The Event Horizon Telescope Collaboration has imaged near-horizon millimeter emission from both Messier 87* (M87*) and Sagittarius A* (Sgr A*) with very-long-baseline interferometry (VLBI) and has found a preference for magnetically arrested disk (MAD) accretion in each case. MAD accretion enables spacetime measurements through future observations of the photon ring, the image feature composed of near-orbiting photons. The ordered fields and relatively weak Faraday rotation of MADs yield rotationally symmetric polarization when viewed at modest inclination. In this letter, we utilize this symmetry along with parallel transport symmetries to construct a gain-robust interferometric quantity that detects the transition between the weakly lensed accretion flow image and the strongly lensed photon ring. We predict a shift in polarimetric phases on long baselines and demonstrate that the photon rings in M87* and Sgr A* can be unambiguously detected {with sensitive, long-baseline measurements. For M87* we find that photon ring detection in snapshot observations requires $\sim1$ mJy sensitivity on $>15$ G$\lambda$ baselines at 230 GHz and above, which could be achieved with space-VLBI or higher-frequency ground-based VLBI. For Sgr A*, we find that interstellar scattering inhibits photon ring detectability at 230 GHz, but $\sim10$ mJy sensitivity on $>12$ G$\lambda$ baselines at 345 GHz is sufficient, which is accessible from the ground. For both sources, these sensitivity requirements may be relaxed by repeated observations and averaging.