scispace - formally typeset
Search or ask a question

Showing papers by "Goangseup Zi published in 1999"


Book ChapterDOI
TL;DR: In this article, the effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically.
Abstract: The effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically. Tests of novel geometrically similar carbon–PEEK specimens, with notches slanted so as to lead to a pure kink band (not accompanied by shear or splitting cracks), are conducted. They confirm the possibility of stable growth of long kind bands before the peak load, and reveal the existence of a strong (deterministic, non-statistical) size effect. The bi-logarithmic plot of the nominal strength (load divided by size and thickness) versus the characteristic size agrees with the approximate size effect law proposed for quasibrittle failures in 1983 by Bažant. The plot exhibits a gradual transition from a horizontal asymptote, representing the case of no size effect (characteristic of plasticity or strength criteria), to an asymptote of slope -1/2 (characteristic of linear elastic fracture mechanics, LEFM). A new derivation of this law by approximate (asymptotically correct) J-integral analysis of the energy release, as well as by the recently proposed nonlocal fracture mechanics, is given. The size effect law is further generalized to notch-free specimens attaining the maximum load after a stable growth of a kink band transmitting a uniform residual stress, and the generalized law is verified by Soutis, Curtis and Fleck's recent compression tests of specimens with holes of different diameters. The nominal strength of specimens failing at the initiation of a kink band from a smooth surface is predicted to also exhibit a (deterministic) size effect if there is a nonzero stress gradient at the surface. A different size effect law is derived for this case by analyzing the stress redistribution. The size effect law for notched specimens permits the fracture energy of the kink band and the length of the fracture process zone at the front of the band to be identified solely from the measurements of maximum loads. The results indicate that the current design practice, which relies on the strength criteria or plasticity and thus inevitably misses the size effect, is acceptable only for small structural parts and, in the interest of safety, should be revised in the case of large structural parts.

101 citations