scispace - formally typeset
Search or ask a question

Showing papers by "Habte Tekie published in 2014"


Journal ArticleDOI
TL;DR: Proper canal water management could reduce vector abundance and malaria transmission in the irrigated villages, revealing that the irrigation schemes resulted in intensified malaria transmission due to poor Canal water management.
Abstract: Background: Irrigation schemes have been blamed for the increase in malaria in many parts of sub-Saharan Africa. However, proper water management could help mitigate malaria around irrigation schemes in this region. This study investigates the link between irrigation and malaria in Central Ethiopia. Methods: Larval and adult mosquitoes were collected fortnightly between November 2009 and October 2010 from two irrigated and two non-irrigated (control) villages in the Ziway area, Central Ethiopia. Daily canal water releases were recorded during the study period and bi-weekly correlation analysis was done to determine relationships between canal water releases and larval/adult vector densities. Blood meal sources (bovine vs human) and malaria sporozoite infection were tested using enzyme-linked immunosorbent assay (ELISA). Monthly malaria data were also collected from central health centre of the study villages. Results: Monthly malaria incidence was over six-fold higher in the irrigated villages than the non-irrigated villages. The number of anopheline breeding habitats was 3.6 times higher in the irrigated villages than the non-irrigated villages and the most common Anopheles mosquito breeding habitats were waterlogged field puddles, leakage pools from irrigation canals and poorly functioning irrigation canals. Larval and adult anopheline densities were seven- and nine-fold higher in the irrigated villages than in the non-irrigated villages, respectively, during the study period. Anopheles arabiensis was the predominant species in the study area. Plasmodium falciparum sporozoite rates of An. arabiensis and Anopheles pharoensis were significantly higher in the irrigated villages than the non-irrigated villages. The annual entomological inoculation rate (EIR) calculated for the irrigated and non-irrigated villages were 34.8 and 0.25 P. falciparum infective bites per person per year, respectively. A strong positive correlation was found between bi-weekly anopheline larval density and canal water releases. Similarly, there was a strong positive correlation between bi-weekly vector density and canal water releases lagged by two weeks. Furthermore, monthly malaria incidence was strongly correlated with monthly vector density lagged by a month in the irrigated villages. Conclusion: The present study revealed that the irrigation schemes resulted in intensified malaria transmission due to poor canal water management. Proper canal water management could reduce vector abundance and malaria transmission in the irrigated villages.

69 citations


Journal ArticleDOI
TL;DR: Agricultural fields and thickets of A. seyal habitats, which exhibit extensive soil cracks and fissures, as opposed to dense mixed forests, serve as preferred breeding sites for P. orientalis.
Abstract: Kafta Humera lowlands are endemic for kala-azar (visceral leishmaniasis). These lowlands are characterized by black clay soil which is used for growing sesame, sorghum and cotton for commercial purposes. The aim of this study was to determine seasonal dynamics and habitat preferences of Phlebotomus orientalis, the vector of kala-azar, in extra-domestic habitats of Kafta Humera lowlands. CDC-light Trap [CDC-LT] and Sticky paper Trap [ST] were used to collect sand flies from different habitats before species identification by their morphological characteristics using appropriate keys. Data summarized and analyzed included: species, sex, density, habitats, type of trap used and date (month). A total of 389,207 sand flies using CDC-LT (n = 955) and ST (n = 5551) were collected from May 17, 2011 to June 6, 2012. The highest Mean Monthly Density (MMD) of P. orientalis trapped by CDC-LT was found in thickets of Acacia seyal in March (64.11 ± 75.87). The corresponding highest MMD of P. orientalis trapped by STs was found in April (58.69 ± 85.20) in agricultural field. No P. orientalis were caught in September using CDC traps and July-October using sticky traps. The overall MMD of P. orientalis trapped by CDC-LT was 15. 78 ± 28.93 (n = 320) in agricultural field, 19.37 ± 36.42 (n = 255) in thickets of A. seyal, and 3.81 ± 6.45 (n = 380) in dense mixed forest. Similar habitats in different localities did not show statistically significant difference for the MMD of P. orientalis trapped by CDC-LT (p = 0.117) and ST (p = 0.134). Agricultural fields and thickets of A. seyal habitats, which exhibit extensive soil cracks and fissures, as opposed to dense mixed forests, serve as preferred breeding sites for P. orientalis.

21 citations


Journal ArticleDOI
TL;DR: Female P. orientalis can bite humans in extra-domestic habitats of Kafta-Humera lowlands at any hour of the night with peak biting after midnight.
Abstract: Phlebotomus orientalis feeds on a variety of wild and domestic animals and transmits Leishmania donovani from hitherto unknown reservoir hosts to humans in extra-domestic habitats in the Metema - Humera lowlands. The aim of this study was to determine the nocturnal activities of P. orientalis and its preferred blood meal hosts. Collections of Phlebotomus orientalis were made by using CDC light traps to determine the density as P. orientalis/hour CDC trap and preference to rodents by using Turner’s traps in agricultural fields, animal shelters and thickets of Acacia seyal in Baeker site-1 and Gelanzeraf site-2. The blood meal sources were detected by Reverse Line Blot (RLB) of cytochrome b polymerase chain reaction (PCR) amplification in August, 2012 from collections of sand flies in thickets of A. seyal (March 2011) and dense mixed forest (July 2011) in Baeker site 1. RLB PCR involved first amplification of animal specific sequences of cytochrome b using PCR techniques. Then the amplified sequence was hybridized with 11 species-specific probes for domestic animals adsorbed on nitrocellulose membrane for calorimetric color detection. A total of 6,083 P. orientalis (2,702 males and 3,381 females) were collected at hourly intervals using 22 CDC traps from January to May 2013. The peak activities of P. orientalis were at 1.00 a.m (134.0 ± 7.21) near animal shelters, 3.00 a.m (66.33 ± 46.40) in agricultural fields and 21:00 pm (40.6 ± 30.06) in thickets of A. seyal. This species was not attracted to the different species of rodents in trials carried out in March and April 2013. RLB PCR identified 7 human (28%), 9 mixed (human and cattle) (36%) and 2 cattle (8%) blood meals while 7 were unknown (28%). Female P. orientalis can bite humans in extra-domestic habitats of Kafta-Humera lowlands at any hour of the night with peak biting after midnight.

17 citations