scispace - formally typeset
Search or ask a question

Showing papers by "Hugo Manuel Ribeiro Dias da Silva published in 2023"


Journal ArticleDOI
TL;DR: In this paper , the authors evaluated the effects of microwave heating on the self-healing performance of three asphalt mixtures: conventional, with steel wool fibers (SWF), and with steel slag aggregates (SSA) and SWF.
Abstract: Self-healing in asphalt mixtures is a property that can be enhanced by external heating, which causes a thermal expansion that increases the flow of bitumen with reduced viscosity through the cracks. Therefore, this study aims to evaluate the effects of microwave heating on the self-healing performance of three asphalt mixtures: (1) conventional, (2) with steel wool fibers (SWF), and (3) with steel slag aggregates (SSA) and SWF. After evaluating the microwave heating capacity of the three asphalt mixtures with a thermographic camera, their self-healing performance was determined with fracture or fatigue tests and microwave heating recovery cycles. The results demonstrated that the mixtures with SSA and SWF promoted higher heating temperatures and presented the best self-healing capacity during the semicircular bending test and heating cycles, with significant strength recovery after a total fracture. In contrast, the mixtures without SSA presented inferior fracture results. Both the conventional mixture and that containing SSA and SWF presented high healing indexes after the four-point bending fatigue test and heating cycles, with a fatigue life recovery of around 150% after applying two healing cycles. Therefore, the conclusion is that SSA greatly influences the self-healing performance of asphalt mixtures after microwave radiation heating.

1 citations


Journal ArticleDOI
TL;DR: In this article , the influence of the type and amount of asphalt emulsion and the amount of added water and filler (cement) on the characteristics of the mixture were evaluated.
Abstract: Microsurfacing asphalt mixtures are a preventive maintenance technology comprising the application of a slurry (produced with a modified asphalt emulsion), aggregate, filler, and water on top of an existing pavement at ambient temperature. Although it is a widely used technology, further studies on the mix design procedures are necessary to ensure an adequate composition. Thus, this study contributes to developing an improved mix design procedure for microsurfacing asphalt mixtures. Different mixtures were prepared, and the influence of the type and amount of asphalt emulsion and the amount of added water and filler (cement) on the characteristics of the mixture were evaluated. Two preliminary tests, referred to as the “pizza test” and the “ball test”, were proposed to determine the initial proportions of added water and cement in the mixture, respectively. Then, consistency, cohesion, and shaking abrasion tests were performed to determine the optimum content of each component and evaluate their influence on the mixture characteristics. The results showed that these tests are essential to optimize the mix composition, even though it was found that the mix design of microsurfacings is a complex task because the mixture is a system with chemical interactions strongly influenced by its composition.