scispace - formally typeset
Search or ask a question

Showing papers by "Isaiah W. Cox published in 2020"


Patent
09 Jan 2020
TL;DR: In this paper, a monitoring system and method are provided to monitor ground movement of aircraft driven with electric taxi drive systems and movement of ground service vehicles and equipment and personnel within airport ramp areas.
Abstract: A monitoring system and method are provided to monitor ground movement of aircraft driven with electric taxi drive systems and movement of ground service vehicles and equipment and personnel within airport ramp areas. Monitor and sensor devices, including those that are intelligent and employ scanning technology to generate image, positional, and other data may be mounted in locations on aircraft, ground service vehicles and equipment, passenger loading bridges, an airport terminal, and other ramp locations to generate a constant stream of data as the aircraft moves into, within, and out of an airport ramp area. The data stream is transmitted to an artificial intelligence-based processing system to identify and communicate possible safety hazards to multiple locations so that the aircraft's ground travel or a ground vehicle's travel may be altered to avoid identified safety hazards and to avoid collisions.

4 citations


Patent
23 Jan 2020
TL;DR: In this paper, an improved ground collision avoidance system and method for aircraft driven during ground operations by electric taxi drive systems is provided for aircraft using LiDAR technology, where the point of view images are transmitted in real time to displays in the aircraft cockpit and may be transmitted to displays outside and remote from the aircraft, allowing the pilot and airport personnel to monitor the aircraft moving within the ramp environment and to respond quickly to control the aircraft's electric taxi system-powered ground travel to avoid and prevent a potential collision.
Abstract: An improved ground collision avoidance system and method is provided for aircraft driven during ground operations by electric taxi drive systems. One or more monitoring devices employing scanning LiDAR technology may be mounted in exterior locations on or near aircraft landing gears or aerodynamically in locations on the aircraft fuselage selected to generate panoramic three-dimensional images from any point of view within or without the aircraft as the aircraft is driven independently within an airport ramp area. The point of view images are transmitted in real time to displays in the aircraft cockpit and may be transmitted to displays outside and remote from the aircraft, allowing the pilot and airport personnel to monitor the aircraft moving within the ramp environment and to respond quickly to control the aircraft's electric taxi drive system-powered ground travel to avoid and prevent a potential collision.

4 citations


Patent
11 Jun 2020
TL;DR: In this article, an integrated monitoring system and method for monitoring ground surface movements of electric taxi drive system-driven aircraft, ground vehicles and personnel, and objects within airport ramp areas.
Abstract: An integrated monitoring system and method are provided with the capability for monitoring ground surface movements of electric taxi drive system-driven aircraft, ground vehicles and personnel, and objects within airport ramp areas. Monitoring units may include a scanning LiDAR device with and without cameras or other sensing devices to transmit meshed real time encrypted data from multiple locations to an artificial intelligence-based processing system that generates a visual display of the monitored area for communication to aircraft cockpits and locations responsible for controlling ramp operations. Monitoring units may be mounted in single or multiple exterior locations on aircraft and/or in locations on ground vehicles and equipment, ground personnel, and the airside portion of an airport terminal.

1 citations


Patent
17 Sep 2020
TL;DR: A monitoring system and method for real time monitoring of flaps, landing gears, or tail skids to determine safe taxi, takeoff, and flight readiness is provided in this article.
Abstract: A monitoring system and method are provided for real time monitoring of flaps, landing gears, or tail skids to determine safe taxi, takeoff, and flight readiness. Monitoring units, including scanning LiDAR devices combined with cameras or sensors, mounted in aircraft exterior locations produce a stream of meshed data that is securely transmitted to a processing system to generate a real time visual display of the flaps, landing gears, or tail skid for communication to aircraft pilots to ensure safe aircraft taxi, takeoff, and flight readiness. Actual flap position alignment with optimal flap setting, proper retraction and extension positions of landing gears, and tail skid condition is ensured. Safety of aircraft taxi, takeoff and flight and airport operations are improved when the present system and method are used to prevent incidents related to misaligned flaps and improperly positioned landing gears or tail skids.