Author

# Jain M. Johnstone

Bio: Jain M. Johnstone is an academic researcher from Stanford University. The author has contributed to research in topics: Piecewise & Estimator. The author has an hindex of 1, co-authored 1 publications receiving 7707 citations.

Topics: Piecewise, Estimator, Wavelet, Oracle, Spline (mathematics)

##### Papers

More filters

••

TL;DR: In this article, the authors developed a spatially adaptive method, RiskShrink, which works by shrinkage of empirical wavelet coefficients, and achieved a performance within a factor log 2 n of the ideal performance of piecewise polynomial and variable-knot spline methods.

Abstract: SUMMARY With ideal spatial adaptation, an oracle furnishes information about how best to adapt a spatially variable estimator, whether piecewise constant, piecewise polynomial, variable knot spline, or variable bandwidth kernel, to the unknown function. Estimation with the aid of an oracle offers dramatic advantages over traditional linear estimation by nonadaptive kernels; however, it is a priori unclear whether such performance can be obtained by a procedure relying on the data alone. We describe a new principle for spatially-adaptive estimation: selective wavelet reconstruction. We show that variable-knot spline fits and piecewise-polynomial fits, when equipped with an oracle to select the knots, are not dramatically more powerful than selective wavelet reconstruction with an oracle. We develop a practical spatially adaptive method, RiskShrink, which works by shrinkage of empirical wavelet coefficients. RiskShrink mimics the performance of an oracle for selective wavelet reconstruction as well as it is possible to do so. A new inequality in multivariate normal decision theory which we call the oracle inequality shows that attained performance differs from ideal performance by at most a factor of approximately 2 log n, where n is the sample size. Moreover no estimator can give a better guarantee than this. Within the class of spatially adaptive procedures, RiskShrink is essentially optimal. Relying only on the data, it comes within a factor log 2 n of the performance of piecewise polynomial and variableknot spline methods equipped with an oracle. In contrast, it is unknown how or if piecewise polynomial methods could be made to function this well when denied access to an oracle and forced to rely on data alone.

8,153 citations

##### Cited by

More filters

••

TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.

Abstract: SUMMARY We propose a new method for estimation in linear models. The 'lasso' minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also an interesting relationship with recent work in adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and can be applied in a variety of statistical models: extensions to generalized regression models and tree-based models are briefly described.

40,785 citations

••

TL;DR: In comparative timings, the new algorithms are considerably faster than competing methods and can handle large problems and can also deal efficiently with sparse features.

Abstract: We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, two-class logistic regression, and multinomial regression problems while the penalties include l(1) (the lasso), l(2) (ridge regression) and mixtures of the two (the elastic net). The algorithms use cyclical coordinate descent, computed along a regularization path. The methods can handle large problems and can also deal efficiently with sparse features. In comparative timings we find that the new algorithms are considerably faster than competing methods.

13,656 citations

••

TL;DR: In this article, a step-by-step guide to wavelet analysis is given, with examples taken from time series of the El Nino-Southern Oscillation (ENSO).

Abstract: A practical step-by-step guide to wavelet analysis is given, with examples taken from time series of the El Nino–Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finite-length time series, and the relationship between wavelet scale and Fourier frequency. New statistical significance tests for wavelet power spectra are developed by deriving theoretical wavelet spectra for white and red noise processes and using these to establish significance levels and confidence intervals. It is shown that smoothing in time or scale can be used to increase the confidence of the wavelet spectrum. Empirical formulas are given for the effect of smoothing on significance levels and confidence intervals. Extensions to wavelet analysis such as filtering, the power Hovmoller, cross-wavelet spectra, and coherence are described. The statistical significance tests are used to give a quantitative measure of change...

12,803 citations

••

TL;DR: In this article, penalized likelihood approaches are proposed to handle variable selection problems, and it is shown that the newly proposed estimators perform as well as the oracle procedure in variable selection; namely, they work as well if the correct submodel were known.

Abstract: Variable selection is fundamental to high-dimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized likelihood approaches are proposed to handle these kinds of problems. The proposed methods select variables and estimate coefficients simultaneously. Hence they enable us to construct confidence intervals for estimated parameters. The proposed approaches are distinguished from others in that the penalty functions are symmetric, nonconcave on (0, ∞), and have singularities at the origin to produce sparse solutions. Furthermore, the penalty functions should be bounded by a constant to reduce bias and satisfy certain conditions to yield continuous solutions. A new algorithm is proposed for optimizing penalized likelihood functions. The proposed ideas are widely applicable. They are readily applied to a variety of ...

8,314 citations

••

Stanford University

^{1}, Cleveland Clinic^{2}, University of Toronto^{3}, Centre national de la recherche scientifique^{4}, Université Paris-Saclay^{5}, University of Paris-Sud^{6}, Avaya^{7}, Rutgers University^{8}, RAND Corporation^{9}, IBM^{10}, University of Pennsylvania^{11}, University of Western Australia^{12}, University of Minnesota^{13}TL;DR: A publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates is described.

Abstract: The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS modification efficiently implements Forward Stagewise linear regression, another promising new model selection method; this connection explains the similar numerical results previously observed for the Lasso and Stagewise, and helps us understand the properties of both methods, which are seen as constrained versions of the simpler LARS algorithm. (3) A simple approximation for the degrees of freedom of a LARS estimate is available, from which we derive a Cp estimate of prediction error; this allows a principled choice among the range of possible LARS estimates. LARS and its variants are computationally efficient: the paper describes a publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates.

7,828 citations