scispace - formally typeset
Search or ask a question

Showing papers by "Jeffrey C. Suttle published in 2004"


Journal ArticleDOI
TL;DR: Based on available evidence, it is concluded that both ABA and ethylene are required for dormancy induction, but only ABA is needed to maintain bud dormancy.
Abstract: At harvest, potato (Solanum tuberosum L.) tubers are dormant and will not sprout. As the period of postharvest storage is extended, tuber dormancy is broken and sprout growth commences. The loss of tuber dormancy and onset of sprout growth is accompanied by numerous biochemical changes, many of which are detrimental to the nutritional and processing qualities of potatoes. Endogenous hormones have been proposed to play a significant role in tuber dormancy regulation. The involvement of all major classes of endogenous hormones in tuber dormancy is reviewed. Based on available evidence, it is concluded that both ABA and ethylene are required for dormancy induction, but only ABA is needed to maintain bud dormancy. An increase in cytokinin sensitivity and content appear to be the principal factors leading to the loss of dormancy. Changes in endogenous IAA and GA content appear to be more closely related to the regulation of subsequent sprout growth.

171 citations


Journal ArticleDOI
TL;DR: Results do not support a role for endogenous GA in potato tuber dormancy release but are consistent with a role with GAs in the regulation of subsequent sprout growth.

82 citations


Journal ArticleDOI
TL;DR: In this article, the role of the hormone ethylene in wound-induced suberization of potato tuber was examined over a 9-day wound-healing period, using a variety of ethylene biosynthesis and action inhibitors.

50 citations


Journal ArticleDOI
TL;DR: A defined sequence of epigenetic events, beginning with previously characterized transient cytosine demethylation, followed by increased H3 and H4 histone acetylation and ultimately, tuber meristem re-activation, may thus exist in potatoes during dormancy exit and resumption of rapid growth.
Abstract: The effects of post-harvest storage and dormancy progression on histone acetylation patterns were examined in potato (Solanum tuberosum L. cv. Russet Burbank) tubers. Storage of field-grown tubers at 3 degrees C in the dark resulted in the progressive loss of tuber meristem dormancy, defined as measurable growth after transfer to 20 degrees C for 7 days. Dormancy emergence was concomitant with sustained increases in histone H3.1 and H3.2 multi-acetylation, and with transient increases in H4 multi-acetylation that peaked 4-5 months post-harvest. Treatment of dormant tubers with bromoethane (BE) resulted in rapid loss of dormancy over 9 days. Similar to cold-stored field-grown tubers, dormancy break in BE-treated tubers occurred at the same time as transient rises in H4 and H3.1/3.2 multi-acetylation, peaking at days 1 and 4, respectively. BE treatment also resulted in small increases in RNA synthesis at day 6, and a three-fold, sustained activation of DNA synthesis thereafter. A defined sequence of epigenetic events, beginning with previously characterized transient cytosine demethylation, followed by increased H3 and H4 histone acetylation and ultimately, tuber meristem re-activation, may thus exist in potatoes during dormancy exit and resumption of rapid growth.

45 citations