scispace - formally typeset
Search or ask a question
Author

Joachim Sauer

Bio: Joachim Sauer is an academic researcher from Humboldt University of Berlin. The author has contributed to research in topics: Density functional theory & Ab initio. The author has an hindex of 83, co-authored 439 publications receiving 23885 citations. Previous affiliations of Joachim Sauer include Humboldt State University & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: In this article, structural and electronic properties and energetic quantities related to the formation of oxygen defects at transition metal (TM) and rare earth (RE) oxide surfaces, neutral oxygen vacancies in particular, play a major role in a variety of technological applications.
Abstract: Defects at transition metal (TM) and rare earth (RE) oxide surfaces, neutral oxygen vacancies in particular, play a major role in a variety of technological applications. This is the motivation of numerous studies of partially reduced oxide surfaces. We review, discuss, and compare theoretical data for structural and electronic properties and energetic quantities related to the formation of oxygen defects at TM and RE oxide surfaces using TiO2, ZrO2, V 2O5, and CeO2 as examples. Bulk defects, as far as relevant for comparison with the properties of reduced surfaces, are briefly reviewed. Special attention is given to the fate of the electrons left in the system upon vacancy formation and the ability of state-of-the-art quantum-mechanical methods to provide reliable energies and an accurate description of the electronic structure of the partially reduced oxide systems.

964 citations

Journal ArticleDOI

[...]

672 citations

Journal ArticleDOI

[...]

672 citations

Journal ArticleDOI

[...]

652 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, periodic density functional theory (DFT) calculations for the ground state properties of ground state structures were performed using the Perdew-Burke-Ernzerhof (PBE0) and Heyd-Scuseria-Ernerhof (HSE) hybrid functionals that include nonlocal Fock exchange.
Abstract: We report periodic density functional theory (DFT) calculations for ${\mathrm{CeO}}_{2}$ and ${\mathrm{Ce}}_{2}{\mathrm{O}}_{3}$ using the Perdew-Burke-Ernzerhof (PBE0) and Heyd-Scuseria-Ernzerhof (HSE) hybrid functionals that include nonlocal Fock exchange. We study structural, electronic, and magnetic ground state properties. Hybrid functionals correctly predict ${\mathrm{Ce}}_{2}{\mathrm{O}}_{3}$ to be an insulator as opposed to the ferromagnetic metal predicted by the local spin density (LDA) and generalized gradient (GGA) approximations. The equilibrium volumes of both structures are in very good agreement with experiments, improving upon the description of the LDA and GGA. The calculated ${\mathrm{CeO}}_{2}$ (O $2p$--Ce $5d$) and ${\mathrm{Ce}}_{2}{\mathrm{O}}_{3}$ $(\mathrm{Ce}\phantom{\rule{0.3em}{0ex}}4f\text{\ensuremath{-}}5d4f)$ band gaps are larger by up to 45% (PBE0) and 15% (HSE) than found in experiments. Furthermore, we calculate atomization energies, heats of formation, and the reduction energy of $2{\mathrm{CeO}}_{2}\ensuremath{\rightarrow}{\mathrm{Ce}}_{2}{\mathrm{O}}_{3}+(1∕2){\mathrm{O}}_{2}$. The latter is underestimated by $\ensuremath{\sim}0.4--0.9\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$ with respect to available experimental data at room temperature. We compare our results with the more traditional DFT+$U$ (LDA$+U$ and PBE$+U$) approach and discuss the role played by the Hubbard $U$ parameter.

487 citations


Cited by
More filters
Journal ArticleDOI

[...]

TL;DR: The revised DFT-D method is proposed as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.
Abstract: The method of dispersion correction as an add-on to standard Kohn-Sham density functional theory (DFT-D) has been refined regarding higher accuracy, broader range of applicability, and less empiricism. The main new ingredients are atom-pairwise specific dispersion coefficients and cutoff radii that are both computed from first principles. The coefficients for new eighth-order dispersion terms are computed using established recursion relations. System (geometry) dependent information is used for the first time in a DFT-D type approach by employing the new concept of fractional coordination numbers (CN). They are used to interpolate between dispersion coefficients of atoms in different chemical environments. The method only requires adjustment of two global parameters for each density functional, is asymptotically exact for a gas of weakly interacting neutral atoms, and easily allows the computation of atomic forces. Three-body nonadditivity terms are considered. The method has been assessed on standard benchmark sets for inter- and intramolecular noncovalent interactions with a particular emphasis on a consistent description of light and heavy element systems. The mean absolute deviations for the S22 benchmark set of noncovalent interactions for 11 standard density functionals decrease by 15%-40% compared to the previous (already accurate) DFT-D version. Spectacular improvements are found for a tripeptide-folding model and all tested metallic systems. The rectification of the long-range behavior and the use of more accurate C(6) coefficients also lead to a much better description of large (infinite) systems as shown for graphene sheets and the adsorption of benzene on an Ag(111) surface. For graphene it is found that the inclusion of three-body terms substantially (by about 10%) weakens the interlayer binding. We propose the revised DFT-D method as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.

22,557 citations

Journal ArticleDOI

[...]

TL;DR: The M06-2X meta-exchange correlation function is proposed in this paper, which is parametrized including both transition metals and nonmetals, and is a high-non-locality functional with double the amount of nonlocal exchange.
Abstract: We present two new hybrid meta exchange- correlation functionals, called M06 and M06-2X. The M06 functional is parametrized including both transition metals and nonmetals, whereas the M06-2X functional is a high-nonlocality functional with double the amount of nonlocal exchange (2X), and it is parametrized only for nonmetals.The functionals, along with the previously published M06-L local functional and the M06-HF full-Hartree–Fock functionals, constitute the M06 suite of complementary functionals. We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree–Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochemistry, four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for molecular excitation energies. We also illustrate the performance of these 17 methods for three databases containing 40 bond lengths and for databases containing 38 vibrational frequencies and 15 vibrational zero point energies. We recommend the M06-2X functional for applications involving main-group thermochemistry, kinetics, noncovalent interactions, and electronic excitation energies to valence and Rydberg states. We recommend the M06 functional for application in organometallic and inorganometallic chemistry and for noncovalent interactions.

18,691 citations

Journal ArticleDOI

[...]

30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

8,296 citations

Journal ArticleDOI

[...]

TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Abstract: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long

4,897 citations

Book

[...]

01 Sep 2001
TL;DR: A Chemist's Guide to Density Functional Theory should be an invaluable source of insight and knowledge for many chemists using DFT approaches to solve chemical problems.
Abstract: "Chemists familiar with conventional quantum mechanics will applaud and benefit greatly from this particularly instructive, thorough and clearly written exposition of density functional theory: its basis, concepts, terms, implementation, and performance in diverse applications. Users of DFT for structure, energy, and molecular property computations, as well as reaction mechanism studies, are guided to the optimum choices of the most effective methods. Well done!" Paul von RaguE Schleyer "A conspicuous hole in the computational chemist's library is nicely filled by this book, which provides a wide-ranging and pragmatic view of the subject.[...It] should justifiably become the favorite text on the subject for practioneers who aim to use DFT to solve chemical problems." J. F. Stanton, J. Am. Chem. Soc. "The authors' aim is to guide the chemist through basic theoretical and related technical aspects of DFT at an easy-to-understand theoretical level. They succeed admirably." P. C. H. Mitchell, Appl. Organomet. Chem. "The authors have done an excellent service to the chemical community. [...] A Chemist's Guide to Density Functional Theory is exactly what the title suggests. It should be an invaluable source of insight and knowledge for many chemists using DFT approaches to solve chemical problems." M. Kaupp, Angew. Chem.

3,397 citations