scispace - formally typeset
Search or ask a question

Showing papers by "Joel Rozowsky published in 2006"


Journal ArticleDOI
TL;DR: A recent development in microarray research entails the unbiased coverage, or tiling, of genomic DNA for the large-scale identification of transcribed sequences and regulatory elements, and two algorithms for finding an optimal tile path composed of longer sequence tiles are developed.
Abstract: A recent development in microarray research entails the unbiased coverage, or tiling, of genomic DNA for the large-scale identification of transcribed sequences and regulatory elements. A central issue in designing tiling arrays is that of arriving at a single-copy tile path, as significant sequence cross-hybridization can result from the presence of non-unique probes on the array. Due to the fragmentation of genomic DNA caused by the widespread distribution of repetitive elements, the problem of obtaining adequate sequence coverage increases with the sizes of subsequence tiles that are to be included in the design. This becomes increasingly problematic when considering complex eukaryotic genomes that contain many thousands of interspersed repeats. The general problem of sequence tiling can be framed as finding an optimal partitioning of non-repetitive subsequences over a prescribed range of tile sizes, on a DNA sequence comprising repetitive and non-repetitive regions. Exact solutions to the tiling problem become computationally infeasible when applied to large genomes, but successive optimizations are developed that allow their practical implementation. These include an efficient method for determining the degree of similarity of many oligonucleotide sequences over large genomes, and two algorithms for finding an optimal tile path composed of longer sequence tiles. The first algorithm, a dynamic programming approach, finds an optimal tiling in linear time and space; the second applies a heuristic search to reduce the space complexity to a constant requirement. A Web resource has also been developed, accessible at http://tiling.gersteinlab.org, to generate optimal tile paths from user-provided DNA sequences.

60 citations


Journal ArticleDOI
TL;DR: It is shown that the HMM framework is able to efficiently process tiling array data as well as or better than previous approaches, and has strong implications for the optimum way medium-scale validation experiments should be carried out to verify the results of the genome-scale tiling arrays experiments.
Abstract: Motivation: Large-scale tiling array experiments are becoming increasingly common in genomics. In particular, the ENCODE project requires the consistent segmentation of many different tiling array datasets into 'active regions' (e.g. finding transfrags from transcriptional data and putative binding sites from ChIP-chip experiments). Previously, such segmentation was done in an unsupervised fashion mainly based on characteristics of the signal distribution in the tiling array data itself. Here we propose a supervised framework for doing this. It has the advantage of explicitly incorporating validated biological knowledge into the model and allowing for formal training and testing. Methodology: In particular, we use a hidden Markov model (HMM) framework, which is capable of explicitly modeling the dependency between neighboring probes and whose extended version (the generalized HMM) also allows explicit description of state duration density. We introduce a formal definition of the tiling-array analysis problem, and explain how we can use this to describe sampling small genomic regions for experimental validation to build up a gold-standard set for training and testing. We then describe various ideal and practical sampling strategies (e.g. maximizing signal entropy within a selected region versus using gene annotation or known promoters as positives for transcription or ChIP-chip data, respectively). Results: For the practical sampling and training strategies, we show how the size and noise in the validated training data affects the performance of an HMM applied to the ENCODE transcriptional and ChIP-chip experiments. In particular, we show that the HMM framework is able to efficiently process tiling array data as well as or better than previous approaches. For the idealized sampling strategies, we show how we can assess their performance in a simulation framework and how a maximum entropy approach, which samples sub-regions with very different signal intensities, gives the maximally performing gold-standard. This latter result has strong implications for the optimum way medium-scale validation experiments should be carried out to verify the results of the genome-scale tiling array experiments. Supplementary information: The supplementary data are available at http://tiling.gersteinlab.org/hmm/ Contact: mark.gerstein@yale.edu

44 citations


Book ChapterDOI
TL;DR: Some of the most widely used statistical techniques for normalizing and scoring traditional microarray data and indicate their potential utility for analyzing the newer protein and tiling microarray experiments are presented.
Abstract: A credit to microarray technology is its broad application. Two experiments--the tiling microarray experiment and the protein microarray experiment--are exemplars of the versatility of the microarrays. With the technology's expanding list of uses, the corresponding bioinformatics must evolve in step. There currently exists a rich literature developing statistical techniques for analyzing traditional gene-centric DNA microarrays, so the first challenge in analyzing the advanced technologies is to identify which of the existing statistical protocols are relevant and where and when revised methods are needed. A second challenge is making these often very technical ideas accessible to the broader microarray community. The aim of this chapter is to present some of the most widely used statistical techniques for normalizing and scoring traditional microarray data and indicate their potential utility for analyzing the newer protein and tiling microarray experiments. In so doing, we will assume little or no prior training in statistics of the reader. Areas covered include background correction, intensity normalization, spatial normalization, and the testing of statistical significance.

14 citations


Journal ArticleDOI
TL;DR: Analysis of the mapping results of RNA isolated from five cell/tissue types, NB4 cells, NB 4 cells treated with retinoic acid, neutrophils, and placenta, throughout the ENCODE region reveals a large number of novel transcribed regions, which suggest that many of the novel transcription regions may have a functional role.
Abstract: We have used genomic tiling arrays to identify transcribed regions throughout the human genome. Analysis of the mapping results of RNA isolated from five cell/tissue types, NB4 cells, NB4 cells treated with retinoic acid (RA), NB4 cells treated with 12-O-tetradecanoylphorbol-13 acetate (TPA), neutrophils, and placenta, throughout the ENCODE region reveals a large number of novel transcribed regions. Interestingly, neutrophils exhibit a great deal of novel expression in several intronic regions. Comparison of the hybridization results of NB4 cells treated with different stimuli relative to untreated cells reveals that many new regions are expressed upon cell differentiation. One such region is the Hox locus, which contains a large number of novel regions expressed in a number of cell types. Analysis of the trinucleotide composition of the novel transcribed regions reveals that it is similar to that of known exons. These results suggest that many of the novel transcribed regions may have a functional role.

9 citations