scispace - formally typeset
Search or ask a question

Showing papers by "John F. Beacom published in 2023"


13 Jun 2023
TL;DR: In this paper , the neutrino predictions of nearly all modern models (1-, 2-, and 3-d) over the first $\simeq$1 s were investigated, making the first detailed comparisons of these models to each other and to the SN 1987A data.
Abstract: The next Milky Way supernova will be an epochal event in multi-messenger astronomy, critical to tests of supernovae, neutrinos, and new physics. Realizing this potential depends on having realistic simulations of core collapse. We investigate the neutrino predictions of nearly all modern models (1-, 2-, and 3-d) over the first $\simeq$1 s, making the first detailed comparisons of these models to each other and to the SN 1987A neutrino data. Even with different methods and inputs, the models generally agree with each other. However, even considering the low neutrino counts, the models generally disagree with data. What can cause this? We show that neither neutrino oscillations nor different progenitor masses appear to be a sufficient solution. We outline urgently needed work.

1 citations


Peer Review
07 Apr 2023
TL;DR: The All-Sky Automated Survey for Supernovae (ASAS-SN) Sky Patrol 2.0 as discussed by the authors provides continuously updated light curves for 111 million targets derived from numerous external catalogs of stars, galaxies, and solar system objects.
Abstract: The All-Sky Automated Survey for Supernovae (ASAS-SN) began observing in late-2011 and has been imaging the entire sky with nightly cadence since late 2017. A core goal of ASAS-SN is to release as much useful data as possible to the community. Working towards this goal, in 2017 the first ASAS-SN Sky Patrol was established as a tool for the community to obtain light curves from our data with no preselection of targets. Then, in 2020 we released static V-band photometry from 2013--2018 for 61 million sources. Here we describe the next generation ASAS-SN Sky Patrol, Version 2.0, which represents a major progression of this effort. Sky Patrol 2.0 provides continuously updated light curves for 111 million targets derived from numerous external catalogs of stars, galaxies, and solar system objects. We are generally able to serve photometry data within an hour of observation. Moreover, with a novel database architecture, the catalogs and light curves can be queried at unparalleled speed, returning thousands of light curves within seconds. Light curves can be accessed through a web interface (http://asas-sn.ifa.hawaii.edu/skypatrol/) or a Python client (https://asas-sn.ifa.hawaii.edu/documentation). The Python client can be used to retrieve up to 1 million light curves, generally limited only by bandwidth. This paper gives an updated overview of our survey, introduces the new Sky Patrol, and describes its system architecture. These results provide significant new capabilities to the community for pursuing multi-messenger and time-domain astronomy.

1 citations


11 May 2023
TL;DR: Sudoh et al. as discussed by the authors showed that while extended neutrino sources could be missed in the commonly used muon-track channel, they could be discovered in the all-flavor shower channel, which has a lower atmospheric-neutrino background flux per solid angle.
Abstract: Identifying the Milky Way's very high energy hadronic cosmic-ray accelerators -- the PeVatrons -- is a critical problem. While gamma-ray observations reveal promising candidate sources, neutrino detection is needed for certainty, and this has not yet been successful. Why not? There are several possibilities, as we delineated in a recent paper [T. Sudoh and J. F. Beacom, Phys. Rev. D 107, 043002 (2023)]. Here we further explore the possibility that the challenges arise because PeVatrons have a large angular extent, either due to cosmic-ray propagation effects or due to clusters of sources. We show that while extended neutrino sources could be missed in the commonly used muon-track channel, they could be discovered in the all-flavor shower channel, which has a lower atmospheric-neutrino background flux per solid angle. Intrinsically, showers are quite directional and would appear so in water-based detectors like the future KM3NeT, even though they are presently badly smeared by light scattering in ice-based detectors like IceCube. Our results motivate new shower-based searches as part of the comprehensive approach to identifying the Milky Way's hadronic PeVatrons.

1 citations


17 Jul 2023
TL;DR: In this paper , a simplified model of the solar magnetic fields that captures the main elements relevant to gamma-ray production was introduced, and it was shown that lower energy gamma rays are primarily produced in the network elements and higher-energy gamma rays in the intergranule sheets.
Abstract: The Sun is a bright gamma-ray source due to hadronic cosmic-ray interactions with solar gas. While it is known that incoming cosmic rays must generally first be reflected by solar magnetic fields to produce outgoing gamma rays, theoretical models have yet to reproduce the observed spectra. We introduce a simplified model of the solar magnetic fields that captures the main elements relevant to gamma-ray production. These are a flux tube, representing the network elements, and a flux sheet, representing the intergranule sheets. Both the tube and sheet have a horizontal size of order $100~{\rm km}$ and serve as sites where cosmic rays are reflected and gamma rays are produced. Despite having no tuning to match gamma-ray data, our model produces a gamma-ray spectrum that reasonably matches both the hard spectrum seen by Fermi-LAT data at $\text{1--200}~{\rm GeV}$ and the considerably softer spectrum seen by HAWC at near $10^3~{\rm GeV}$. We show that lower-energy ($\lesssim 10~{\rm GeV}$) gamma rays are primarily produced in the network elements and higher-energy ($\gtrsim {\rm few} \times 10~{\rm GeV}$) gamma rays in the intergranule sheets. Notably, the spectrum softening observed by HAWC results from the limited effectiveness of capturing and reflecting $\sim 10^4~{\rm GeV}$ cosmic rays by the finite-sized intergranule sheets. Our study is important for understanding cosmic-ray transport in the solar atmosphere and will lead to insights about small-scale magnetic fields in the quiet photosphere.

19 Jun 2023
TL;DR: In this paper , the Jiangmen Underground Neutrino Observatory (JUNO) was used to detect neutrino-carbon interactions in both neutral-current and charged-current channels.
Abstract: New probes of neutrino mixing are needed to advance precision studies. One promising direction is via the detection of low-energy atmospheric neutrinos (below a few hundred MeV), to which a variety of near-term experiments will have much-improved sensitivity. Here we focus on probing these neutrinos through distinctive nuclear signatures of exclusive neutrino-carbon interactions -- those that lead to detectable nuclear-decay signals with low backgrounds -- in both neutral-current and charged-current channels. Here the neutral-current signature is a line at 15.11 MeV and the charged-current signatures are two- or three-fold coincidences with delayed decays. We calculate the prospects for identifying such events in the Jiangmen Underground Neutrino Observatory (JUNO), a large-scale liquid-scintillator detector. A five-year exposure would yield about 16 neutral-current events (all flavors) and about 16 charged-current events (mostly from $ u_e + \bar{ u}_e$, with some from $ u_\mu + \bar{ u}_\mu$), and thus roughly 25\% uncertainties on each of their rates. Our results show the potential of JUNO to make the first measurement of sub-100 MeV atmospheric neutrinos. They also a step towards multi-detector studies of low-energy atmospheric neutrinos, including with the goal of identifying additional distinctive nuclear signatures for carbon and other targets.

Peer Review
14 Jul 2023
TL;DR: In this paper , the James Webb Space Telescope (JWST) has opened a new window for time-domain discoveries in the infrared field towards MACS J0416.1-2403 which is a rich galaxy cluster at z=0.397 and is one of the Hubble Frontier Fields.
Abstract: With its unprecedented sensitivity and spatial resolution, the James Webb Space Telescope (JWST) has opened a new window for time-domain discoveries in the infrared. Here we report observations in the only field that has received four epochs (over 126 days) of JWST NIRCam observations in Cycle 1. This field is towards MACS J0416.1-2403, which is a rich galaxy cluster at z=0.397 and is one of the Hubble Frontier Fields. We have discovered 14 transients from these data. Twelve of these transients happened in three galaxies (with redshifts z=0.94, 1.01, and 2.091) crossing a lensing caustic of the cluster, and these transients are highly magnified by gravitational lensing. These 12 transients are likely of a similar nature to those previously reported based on the Hubble Space Telescope (HST) data in this field, i.e., individual stars in the highly magnified arcs. However, these twelve could not have been found by the HST because they are too red and too faint. The other two transients are associated with background galaxies (z=2.205 and 0.7093) that are only moderately magnified, and they are likely supernovae. They indicate a de-magnified supernova surface density of 0.5 per sq.arcmin integrated up to z ~ 2 when monitored at the time cadence of a few months. Such a high surface density is achieved at the ~3--4 micron survey limit of AB ~ 28.5 mag, which, while beyond the capability of HST, can be easily reached by JWST.

Peer Review
19 Jun 2023
TL;DR: In this article , the authors present the volumetric rates and luminosity functions (LFs) of Type Ia supernovae (SNe Ia) from the $V$-band All-Sky Automated Survey for Supernovae catalogues spanning discovery dates from UTC 2014-01-26 to UTC 2017-12-29.
Abstract: We present the volumetric rates and luminosity functions (LFs) of Type Ia supernovae (SNe Ia) from the $V$-band All-Sky Automated Survey for Supernovae (ASAS-SN) catalogues spanning discovery dates from UTC 2014-01-26 to UTC 2017-12-29. Our standard sample consists of 404 SNe Ia with $m_{V,\mathrm{peak}}<17$ mag and Galactic latitude $|b|>15^{\circ}$. Our results are both statistically more precise and systematically more robust than previous studies due to the large sample size and high spectroscopic completeness. We make completeness corrections based on both the apparent and absolute magnitudes by simulating the detection of SNe Ia in ASAS-SN light curves. We find a total volumetric rate for all sub-types of $R_{\mathrm{tot}}=2.28^{+0.20}_{-0.20}\,\times 10^{4}\,\mathrm{yr}^{-1}\,\mathrm{Gpc}^{-3}\,h^{3}_{70}$ for $M_{V,\mathrm{peak}}<-16.5$ mag ($R_{\mathrm{tot}}=1.91^{+0.12}_{-0.12}\,\times 10^{4}\,\mathrm{yr}^{-1}\,\mathrm{Gpc}^{-3}\,h^{3}_{70}$ for $M_{V,\mathrm{peak}}<-17.5$ mag) at the median redshift of our sample, $z_{\mathrm{med}}=0.024$. This is in agreement ($1\sigma$) with the local volumetric rates found by previous studies. We also compile luminosity functions (LFs) for the entire sample as well as for sub-types of SNe Ia for the first time. The major sub-types with more than one SN include Ia-91bg, Ia-91T, Ia-CSM, and Ia-03fg with total rates of $R_{\mathrm{Ia-91bg}}=1.4^{+0.5}_{-0.5} \times 10^{3}\,\mathrm{yr}^{-1}\,\mathrm{Gpc}^{-3}\,h^{3}_{70}$, $R_{\mathrm{Ia-91T}}=8.5^{+1.6}_{-1.7} \times 10^{2}\,\mathrm{yr}^{-1}\,\mathrm{Gpc}^{-3}\,h^{3}_{70}$, $R_{\mathrm{Ia-CSM}}=10^{+7}_{-7}\,\mathrm{yr}^{-1}\,\mathrm{Gpc}^{-3}\,h^{3}_{70}$, and $R_{\mathrm{Ia-03fg}}=30^{+20}_{-20}\,\mathrm{yr}^{-1}\,\mathrm{Gpc}^{-3}\,h^{3}_{70}$, respectively. We estimate a mean host extinction of $E(V-r)\approx 0.2$ mag based on the shift between our $V$-band and the ZTF $r$-band LFs.