scispace - formally typeset
Search or ask a question

Showing papers by "Jon E. Wergedal published in 2013"


Journal ArticleDOI
11 Jul 2013-PLOS ONE
TL;DR: It is demonstrated that the mechanical loading-induced increase in EphB2 expression and newly formed bone were significantly greater in the Col3.6-Tgefnb1 mice than in WT littermate controls, suggesting that manipulation of ephrin B1 actions in bone may provide a means to sensitize the skeleton to mechanical strain to stimulate new bone formation.
Abstract: To test if ephrin B1 overexpression enhances bone mass, we generated transgenic mice overexpressing ephrin B1 under the control of a 3.6 kb rat collagen 1A1 promoter (Col3.6-Tg (efnb1) ). Col3.6-Tg (efnb1) mice express 6-, 12- and 14-fold greater levels of full-length ephrin B1 protein in bone marrow stromal cells, calvarial osteoblasts, and osteoclasts, respectively. The long bones of both genders of Col3.6-Tg (efnb1) mice have increased trabecular bone volume, trabecular number, and trabecular thickness and decreased trabecular separation. Enhanced bone formation and decreased bone resorption contributed to this increase in trabecular bone mass in Col3.6-Tg (efnb1) mice. Consistent with these findings, our in vitro studies showed that overexpression of ephrin B1 increased osteoblast differentiation and mineralization, osterix and collagen 1A1 expression in bone marrow stromal cells. Interaction of ephrin B1 with soluble clustered EphB2-Fc decreased osteoclast precursor differentiation into multinucleated cells. Furthermore, we demonstrated that the mechanical loading-induced increase in EphB2 expression and newly formed bone were significantly greater in the Col3.6-Tg (efnb1) mice than in WT littermate controls. Our findings that overexpression of ephrin B1 in bone cells enhances bone mass and promotes a skeletal anabolic response to mechanical loading suggest that manipulation of ephrin B1 actions in bone may provide a means to sensitize the skeleton to mechanical strain to stimulate new bone formation.

24 citations


Journal ArticleDOI
TL;DR: It is concluded that the estrogen effects on osteoclasts may in part be mediated via regulation of Cldn-18 signaling, which is a negative regulator of RANKL-induced osteoclast differentiation and bone resorption in vivo.
Abstract: Claudin-18 (Cldn-18), a member of the tight junction family of proteins, is a negative regulator of RANKL-induced osteoclast differentiation and bone resorption (BR) in vivo. Since estrogen deficie...

8 citations


Journal ArticleDOI
TL;DR: It is concluded that the 109-119 Mb region of chromosome 11 harbors a bone size gene that regulates periosteal bone formation that determines bone size during postnatal development.
Abstract: Using a phenotype driven n-ethyl-nitrosourea (ENU) screen in growth hormone-deficient mice, we have identified a mutant (named 14104) that exhibited a smaller bone size. Phenotype measurements by microcomputed tomography revealed that mutant mice exhibited a 43 and 34% reduction in tissue area and bone area, respectively at the femur middiaphysis. Dynamic histomorphometry revealed a 30 and 15% lower bone formation rate at the periosteal and endosteal surface, respectively. Breaking strength of the femur was reduced by 30% in the mutant mice. To determine if the 14104 locus is involved in a mechanical loading signaling pathway, the skeletal anabolic response to tibia axial loading was evaluated. The increase in trabecular response in the loaded region was severely compromised by the 14014 mutation. To identify the location of mutation, we performed linkage analysis using 62 polymorphic markers in the B6-DBA/2J F2 mice. The genome-wide linkage analysis identified the location of the mutation to a 72 to 83 cM region on chromosome 11 with peak logarithm of the odds scores of 15 for periosteal circumference at marker D11mit338. Sequence analysis revealed no mutation in the coding region of 11 potential candidate genes. Based on these data and published data on the skeletal phenotype of genes in this region, we concluded that the 109-119 Mb region of chromosome 11 harbors a bone size gene that regulates periosteal bone formation. The mutant strain developed in this study provides an important tool to identify a novel mechanosensitive gene that determines bone size during postnatal development.