scispace - formally typeset
Search or ask a question

Showing papers by "Kristina Hettne published in 2010"


Journal ArticleDOI
TL;DR: The ChemSpider dictionary achieved the best precision but the Chemlist dictionary had a higher recall and the best F-score; rule-based filtering and disambiguation is necessary to achieve a high precision for both the automatically generated and the manually curated dictionary.
Abstract: Previously, we developed a combined dictionary dubbed Chemlist for the identification of small molecules and drugs in text based on a number of publicly available databases and tested it on an annotated corpus. To achieve an acceptable recall and precision we used a number of automatic and semi-automatic processing steps together with disambiguation rules. However, it remained to be investigated which impact an extensive manual curation of a multi-source chemical dictionary would have on chemical term identification in text. ChemSpider is a chemical database that has undergone extensive manual curation aimed at establishing valid chemical name-to-structure relationships. We acquired the component of ChemSpider containing only manually curated names and synonyms. Rule-based term filtering, semi-automatic manual curation, and disambiguation rules were applied. We tested the dictionary from ChemSpider on an annotated corpus and compared the results with those for the Chemlist dictionary. The ChemSpider dictionary of ca. 80 k names was only a 1/3 to a 1/4 the size of Chemlist at around 300 k. The ChemSpider dictionary had a precision of 0.43 and a recall of 0.19 before the application of filtering and disambiguation and a precision of 0.87 and a recall of 0.19 after filtering and disambiguation. The Chemlist dictionary had a precision of 0.20 and a recall of 0.47 before the application of filtering and disambiguation and a precision of 0.67 and a recall of 0.40 after filtering and disambiguation. We conclude the following: (1) The ChemSpider dictionary achieved the best precision but the Chemlist dictionary had a higher recall and the best F-score; (2) Rule-based filtering and disambiguation is necessary to achieve a high precision for both the automatically generated and the manually curated dictionary. ChemSpider is available as a web service at http://www.chemspider.com/ and the Chemlist dictionary is freely available as an XML file in Simple Knowledge Organization System format on the web at http://www.biosemantics.org/chemlist .

46 citations


Journal ArticleDOI
TL;DR: This work implemented and evaluated nine term rewrite and eight term suppression rules to make the UMLS more suitable for biomedical text mining, and measures the impact on the number of terms identified by the different rules on a MEDLINE corpus.
Abstract: Background: Identification of terms is essential for biomedical text mining.. We concentrate here on the use of vocabularies for term identification, specifically the Unified Medical Language System (UMLS). To make the UMLS more suitable for biomedical text mining we implemented and evaluated nine term rewrite and eight term suppression rules. The rules rely on UMLS properties that have been identified in previous work by others, together with an additional set of new properties discovered by our group during our work with the UMLS. Our work complements the earlier work in that we measure the impact on the number of terms identified by the different rules on a MEDLINE corpus. The number of uniquely identified terms and their frequency in MEDLINE were computed before and after applying the rules. The 50 most frequently found terms together with a sample of 100 randomly selected terms were evaluated for every rule. Results: Five of the nine rewrite rules were found to generate additional synonyms and spelling variants that correctly corresponded to the meaning of the original terms and seven out of the eight suppression rules were found to suppress only undesired terms. Using the five rewrite rules that passed our evaluation, we were able to identify 1,117,772 new occurrences of 14,784 rewritten terms in MEDLINE. Without the rewriting, we recognized 651,268 terms belonging to 397,414 concepts; with rewriting, we recognized 666,053 terms belonging to 410,823 concepts, which is an increase of 2.8% in the number of terms and an increase of 3.4% in the number of concepts recognized. Using the seven suppression rules, a total of 257,118 undesired terms were suppressed in the UMLS, notably decreasing its size. 7,397 terms were suppressed in the corpus. Conclusions: We recommend applying the five rewrite rules and seven suppression rules that passed our evaluation when the UMLS is to be used for biomedical term identification in MEDLINE. A software tool to apply these rules to the UMLS is freely available at http://biosemantics.org/casper.

38 citations


Journal ArticleDOI
TL;DR: The ChemSpider dictionary achieved the best precision but the Chemlist dictionary had a higher recall and the best F-score; rule-based filtering and disambiguation is necessary to achieve a high precision for both the automatically generated and the manually curated dictionary.

15 citations


Journal Article
TL;DR: In this article, a combined dictionary dubbed Chemlist was developed for the identification of small molecules and drugs in text based on a number of publicly available databases and tested it on an annotated corpus.
Abstract: Background: Previously, we developed a combined dictionary dubbed Chemlist for the identification of small molecules and drugs in text based on a number of publicly available databases and tested it on an annotated corpus. To achieve an acceptable recall and precision we used a number of automatic and semi-automatic processing steps together with disambiguation rules. However, it remained to be investigated which impact an extensive manual curation of a multi-source chemical dictionary would have on chemical term identification in text. ChemSpider is a chemical database that has undergone extensive manual curation aimed at establishing valid chemical name-to-structure relationships. Results: We acquired the component of ChemSpider containing only manually curated names and synonyms. Rule-based term filtering, semi-automatic manual curation, and disambiguation rules were applied. We tested the dictionary from ChemSpider on an annotated corpus and compared the results with those for the Chemlist dictionary. The ChemSpider dictionary of ca. 80 k names was only a 1/3 to a 1/4 the size of Chemlist at around 300 k. The ChemSpider dictionary had a precision of 0.43 and a recall of 0.19 before the application of filtering and disambiguation and a precision of 0.87 and a recall of 0.19 after filtering and disambiguation. The Chemlist dictionary had a precision of 0.20 and a recall of 0.47 before the application of filtering and disambiguation and a precision of 0.67 and a recall of 0.40 after filtering and disambiguation. Conclusions: We conclude the following: (1) The ChemSpider dictionary achieved the best precision but the Chemlist dictionary had a higher recall and the best F-score; (2) Rule-based filtering and disambiguation is necessary to achieve a high precision for both the automatically generated and the manually curated dictionary. ChemSpider is available as a web service at http://www.chemspider.com/ and the Chemlist dictionary is freely available as an XML file in Simple Knowledge Organization System format on the web at http://www.biosemantics. org/chemlist.