scispace - formally typeset
Search or ask a question

Showing papers by "Mário Ramirez published in 2020"


Journal ArticleDOI
TL;DR: This work quantified IgM, IgG, and IgA antibodies recognizing the SARS‐CoV‐2 receptor‐binding domain (RBD) or the Spike (S) protein over a period of 6 months following COVID‐19 onset and highlights a continued level of circulating neutralising antibodies in most people with confirmed Sars‐Co V‐2.
Abstract: SARS-CoV-2 has emerged as a human pathogen, causing clinical signs, from fever to pneumonia-COVID-19-but may remain mild or asymptomatic. To understand the continuing spread of the virus, to detect those who are and were infected, and to follow the immune response longitudinally, reliable and robust assays for SARS-CoV-2 detection and immunological monitoring are needed. We quantified IgM, IgG, and IgA antibodies recognizing the SARS-CoV-2 receptor-binding domain (RBD) or the Spike (S) protein over a period of 6 months following COVID-19 onset. We report the detailed setup to monitor the humoral immune response from over 300 COVID-19 hospital patients and healthcare workers, 2500 University staff, and 198 post-COVID-19 volunteers. Anti-SARS-CoV-2 antibody responses follow a classic pattern with a rapid increase within the first three weeks after symptoms. Although titres reduce subsequently, the ability to detect anti-SARS-CoV-2 IgG antibodies remained robust with confirmed neutralization activity for up to 6 months in a large proportion of previously virus-positive screened subjects. Our work provides detailed information for the assays used, facilitating further and longitudinal analysis of protective immunity to SARS-CoV-2. Importantly, it highlights a continued level of circulating neutralising antibodies in most people with confirmed SARS-CoV-2.

168 citations


Journal ArticleDOI
TL;DR: The results support the in-host evolution of β-lactam-resistant GBS, with two PRGBS variants being isolated from one patient, and their divergence from the US strains.
Abstract: OBJECTIVES Streptococcus agalactiae [group B streptococci (GBS)] have been considered uniformly susceptible to penicillin. However, increasing reports from Asia and North America are documenting penicillin-non-susceptible GBS (PRGBS) with mutations in pbp genes. Here we report, to the best of our knowledge, the first two PRGBS isolates recovered in Europe (AC-13238-1 and AC-13238-2), isolated from the same patient. METHODS Two different colony morphologies of GBS were noted from a surgical abscess drainage sample. Both were serotyped and antimicrobial susceptibility testing was performed by different methodologies. High-throughput sequencing was done to compare the isolates at the genomic level, to identify their capsular type and ST, to evaluate mutations in the pbp genes and to compare the isolates with the genomes of other PRGBS isolates sharing the same serotype and ST. RESULTS Isolates AC-13238-1 and AC-13238-2 presented MICs above the EUCAST and CLSI breakpoints for penicillin susceptibility. Both shared the capsular type Ia operon and ST23. Genomic analysis uncovered differences between the two isolates in seven genes, including altered pbp genes. Deduced amino acid sequences revealed critical substitutions in PBP2X in both isolates. Comparison with serotype Ia clonal complex 23 PRGBS from the USA reinforced the similarity between AC-13238-1 and AC-13238-2, and their divergence from the US strains. CONCLUSIONS Our results support the in-host evolution of β-lactam-resistant GBS, with two PRGBS variants being isolated from one patient.

15 citations


Journal ArticleDOI
TL;DR: The increase in penicillin-resistant serotype 11A IPD in Spain was linked to the spread of a vaccine escape PMEN3 recombinant clone.
Abstract: Background The successful pneumococcal clone Spain9V-ST156 (PMEN3) is usually associated with vaccine serotypes 9V and 14. Aim Our objective was to analyse the increase of a serotype 11A variant of PMEN3 as cause of invasive pneumococcal disease (IPD) in Spain and its spread in south-western Europe. Methods We conducted a prospective multicentre study of adult IPD in Spain (2008–16). Furthermore, a subset of 61 penicillin-resistant serotype 11A isolates from France, Italy, Portugal and Spain were subjected to whole genome sequencing (WGS) and compared with 238 genomes from the European Nucleotide Archive (ENA). Results Although the incidence of serotype 11A in IPD was stable, a clonal shift was detected from CC62 (penicillin-susceptible) to CC156 (penicillin-resistant). By WGS, three major 11A-CC156 lineages were identified, linked to ST156 (n = 5 isolates; France, Italy and Portugal), ST166 (n = 4 isolates; France and Portugal) and ST838/6521 (n = 52 isolates; France, Portugal and Spain). Acquisition of the 11A capsule allowed to escape vaccine effect. AP200 (11A-ST62) was the donor for ST156 and ST838/6521 but not for ST166. In-depth analysis of ST838/6521 lineage showed two multi-fragment recombination events including four and seven fragments from an 11A-ST62 and an NT-ST344 representative, respectively. Conclusion The increase in penicillin-resistant serotype 11A IPD in Spain was linked to the spread of a vaccine escape PMEN3 recombinant clone. Several recombination events were observed in PMEN3 acquiring an 11A capsule. The most successful 11A-PMEN3 lineage spreading in south-western Europe appeared after two multi-fragment recombination events with representatives of two major pneumococcal clones (11A-ST62 and NT-ST344).

12 citations


Posted ContentDOI
02 Sep 2020-medRxiv
TL;DR: This work quantified immunoglobulin M, IgG and IgA antibodies recognizing the SARS-CoV-2 receptor-binding domain (RBD) or the Spike (S) protein over a period of five months following COVID-19 disease onset or in previously Sars-Cov-2 PCR-positive volunteers, and highlighted a continued level of circulating neutralising antibodies in most people with confirmed SARS, at least up to five months after infection.
Abstract: SARS-CoV-2 has emerged as a novel human pathogen, causing clinical signs, from fever to pneumonia - COVID-19 - but may remain mild or even asymptomatic. To understand the continuing spread of the virus, to detect those who are and were infected, and to follow the immune response longitudinally, reliable and robust assays for SARS-CoV-2 detection and immunological monitoring are needed and have been setup around the world. We quantified immunoglobulin M (IgM), IgG and IgA antibodies recognizing the SARS-CoV-2 receptor-binding domain (RBD) or the Spike (S) protein over a period of five months following COVID-19 disease onset or in previously SARS-CoV-2 PCR-positive volunteers. We report the detailed setup to monitor the humoral immune response from over 300 COVID-19 hospital patients and healthcare workers, 2500 University staff and 187 post-COVID19 volunteers, and assessing titres for IgM, IgG and IgA. Anti-SARS-CoV-2 antibody responses followed a classic pattern with a rapid increase within the first three weeks after symptoms. Although titres reduce from approximately four weeks, the ability to detect SARS-CoV-2 antibodies remained robust for five months in a large proportion of previously virus-positive screened subjects. Our work provides detailed information for the assays used, facilitating further and longitudinal analysis of protective immunity to SARS-CoV-2. Moreover, it highlights a continued level of circulating neutralising antibodies in most people with confirmed SARS-CoV-2, at least up to five months after infection.

8 citations


Journal ArticleDOI
01 Mar 2020
TL;DR: DEN-IM is presented, a one-stop, user-friendly, containerized and reproducible workflow for the analysis of DENV short-read sequencing data from both amplicon and shotgun metagenomics approaches, able to infer the DENV coding sequence (CDS), identify the serotype and genotype, and generate a phylogenetic tree.
Abstract: Dengue virus (DENV) represents a public health threat and economic burden in affected countries. The availability of genomic data is key to understanding viral evolution and dynamics, supporting improved control strategies. Currently, the use of high-throughput sequencing (HTS) technologies, which can be applied both directly to patient samples (shotgun metagenomics) and to PCR-amplified viral sequences (amplicon sequencing), is potentially the most informative approach to monitor viral dissemination and genetic diversity by providing, in a single methodological step, identification and characterization of the whole viral genome at the nucleotide level. Despite many advantages, these technologies require bioinformatics expertise and appropriate infrastructure for the analysis and interpretation of the resulting data. In addition, the many software solutions available can hamper the reproducibility and comparison of results. Here we present DEN-IM, a one-stop, user-friendly, containerized and reproducible workflow for the analysis of DENV short-read sequencing data from both amplicon and shotgun metagenomics approaches. It is able to infer the DENV coding sequence (CDS), identify the serotype and genotype, and generate a phylogenetic tree. It can easily be run on any UNIX-like system, from local machines to high-performance computing clusters, performing a comprehensive analysis without the requirement for extensive bioinformatics expertise. Using DEN-IM, we successfully analysed two types of DENV datasets. The first comprised 25 shotgun metagenomic sequencing samples from patients with variable serotypes and genotypes, including an in vitro spiked sample containing the four known serotypes. The second consisted of 106 paired-end and 76 single-end amplicon sequences of DENV 3 genotype III and DENV 1 genotype I, respectively, where DEN-IM allowed detection of the intra-genotype diversity. The DEN-IM workflow, parameters and execution configuration files, and documentation are freely available at https://github.com/B-UMMI/DEN-IM).

1 citations