scispace - formally typeset
Search or ask a question

Showing papers by "Mark H. Carpenter published in 2008"


Proceedings ArticleDOI
05 May 2008
TL;DR: In this article, a third-order Energy Stable Weighted Essentially Non-Oscillatory (ESWENO) finite difference scheme for scalar and vector hyperbolic equations with piecewise continuous initial conditions is developed.
Abstract: A new third-order Energy Stable Weighted Essentially Non-Oscillatory (ESWENO) finite difference scheme for scalar and vector hyperbolic equations with piecewise continuous initial conditions is developed. The new scheme is proven to be linearly stable in the energy norm for both continuous and discontinuous solutions. In contrast to the existing high-resolution shock-capturing schemes, no assumption that the reconstruction should be total variation bounded (TVB) is explicitly required to prove stability of the new scheme. We also present new weight functions which drastically improve the accuracy of the third-order ESWENO scheme. Based on a truncation error analysis, we show that the ESWENO scheme is design-order accurate for smooth solutions with any number of vanishing derivatives, if its tuning parameters satisfy certain constraints. Numerical results show that the new ESWENO scheme is stable and significantly outperforms the conventional third-order WENO scheme of Jiang and Shu in terms of accuracy, while providing essentially non-oscillatory solutions near strong discontinuities.

21 citations


Proceedings Article
05 May 2008
TL;DR: In this article, a third-order Energy Stable Weighted Essentially NonOscillatory (ESWENO) finite difference scheme for scalar and vector linear hyperbolic equations with piecewise continuous initial conditions is developed.
Abstract: A new third-order Energy Stable Weighted Essentially NonOscillatory (ESWENO) finite difference scheme for scalar and vector linear hyperbolic equations with piecewise continuous initial conditions is developed. The new scheme is proven to be stable in the energy norm for both continuous and discontinuous solutions. In contrast to the existing high-resolution shock-capturing schemes, no assumption that the reconstruction should be total variation bounded (TVB) is explicitly required to prove stability of the new scheme. A rigorous truncation error analysis is presented showing that the accuracy of the 3rd-order ESWENO scheme is drastically improved if the tuning parameters of the weight functions satisfy certain criteria. Numerical results show that the new ESWENO scheme is stable and significantly outperforms the conventional third-order WENO finite difference scheme of Jiang and Shu in terms of accuracy, while providing essentially nonoscillatory solutions near strong discontinuities.

9 citations