scispace - formally typeset
Search or ask a question

Showing papers by "Martin Pelletier published in 2004"


Journal ArticleDOI
TL;DR: IL-21 is found to be a proinflammatory cytokine, but not a neutrophil agonist, and it is proposed that IL-21 attracts neutrophils indirectly in vivo via a mechanism independent of IL-6,CCL3, CCL5, and CXCL2 production.
Abstract: IL-21 is a cytokine known to mediate its biological action via the IL-21R, composed of a specific chain, IL-21Ralpha, and the common gamma-chain (CD132). Recent data suggest that IL-21 possesses proinflammatory properties. However, there is no clear evidence that IL-21 induces inflammation in vivo and, curiously, the interaction between IL-21 and neutrophils has never been investigated, despite the fact that these cells express CD132 and respond to other CD132-dependent cytokines involved in inflammatory disorders. Using the murine air pouch model, we found that IL-21 induced inflammation in vivo, based on recruitment of neutrophil and monocyte populations. In contrast to LPS, administration of IL-21 into the air pouch did not significantly increase the concentration of IL-6, CCL5, CCL3, and CXCL2. We demonstrated that HL-60 cells expressed IL-21Ralpha, which is down-regulated during their differentiation toward neutrophils, and that IL-21Ralpha is not detected in neutrophils. Concomitant with this, IL-21 induced Erk-1/2 phosphorylation in HL-60 cells, but not in neutrophils. To eliminate the possibility that IL-21 could activate neutrophils even in the absence of IL-21Ralpha, we demonstrated that IL-21 did not modulate several neutrophil functions. IL-21-induced Erk-1/2 phosphorylation was not associated with proliferation or differentiation of HL-60 toward neutrophils, monocytes, or macrophages. IL-21Ralpha was detected in human monocytes and monocyte-derived macrophages, but IL-21 increased CXCL8 production only in monocyte-derived macrophages. We conclude that IL-21 is a proinflammatory cytokine, but not a neutrophil agonist. We propose that IL-21 attracts neutrophils indirectly in vivo via a mechanism independent of IL-6, CCL3, CCL5, and CXCL2 production.

109 citations