scispace - formally typeset
Search or ask a question

Showing papers by "Mert R. Sabuncu published in 2022"


Journal ArticleDOI
TL;DR: Gu et al. as mentioned in this paper proposed a surface-based convolutional network model that maps from brain response to semantic image features first and then combine this model with a high-quality image generator (Instance-Conditioned GAN) to train another mapping from brain responses to fine-grained image features using a variational approach.
Abstract: Due to the low signal-to-noise ratio and limited resolution of functional MRI data, and the high complexity of natural images, reconstructing a visual stimulus from human brain fMRI measurements is a challenging task. In this work, we propose a novel approach for this task, which we call Cortex2Image, to decode visual stimuli with high semantic fidelity and rich fine-grained detail. In particular, we train a surface-based convolutional network model that maps from brain response to semantic image features first (Cortex2Semantic). We then combine this model with a high-quality image generator (Instance-Conditioned GAN) to train another mapping from brain response to fine-grained image features using a variational approach (Cortex2Detail). Image reconstructions obtained by our proposed method achieve state-of-the-art semantic fidelity, while yielding good fine-grained similarity with the ground-truth stimulus. Our code is available at: https://github.com/zijin-gu/meshconv-decoding.git.

8 citations


Journal ArticleDOI
16 Nov 2022-PLOS ONE
TL;DR: In this article , the authors present an empirical study to characterize how predictable an individual subjects' future AD trajectory is, several years in advance, based on rich multi-modal data, and using modern deep learning methods.
Abstract: Alzheimer’s disease (AD) is a neurodegenerative condition that progresses over decades. Early detection of individuals at high risk of future progression toward AD is likely to be of critical significance for the successful treatment and/or prevention of this devastating disease. In this paper, we present an empirical study to characterize how predictable an individual subjects’ future AD trajectory is, several years in advance, based on rich multi-modal data, and using modern deep learning methods. Crucially, the machine learning strategy we propose can handle different future time horizons and can be trained with heterogeneous data that exhibit missingness and non-uniform follow-up visit times. Our experiments demonstrate that our strategy yields predictions that are more accurate than a model trained on a single time horizon (e.g. 3 years), which is common practice in prior literature. We also provide a comparison between linear and nonlinear models, verifying the well-established insight that the latter can offer a boost in performance. Our results also confirm that predicting future decline for cognitively normal (CN) individuals is more challenging than for individuals with mild cognitive impairment (MCI). Intriguingly, however, we discover that prediction accuracy decreases with increasing time horizon for CN subjects, but the trend is in the opposite direction for MCI subjects. Additionally, we quantify the contribution of different data types in prediction, which yields novel insights into the utility of different biomarkers. We find that molecular biomarkers are not as helpful for CN individuals as they are for MCI individuals, whereas magnetic resonance imaging biomarkers (hippocampus volume, specifically) offer a significant boost in prediction accuracy for CN individuals. Finally, we show how our model’s prediction reveals the evolution of individual-level progression risk over a five-year time horizon. Our code is available at https://github.com/batuhankmkaraman/mlbasedad.

5 citations


Proceedings Article
TL;DR: This work proposes KeyMorph, an unsupervised end-to-end learning-based image registration framework that relies on automatically detecting corresponding keypoints and shows that this strategy leads to consistent keypoints, even across modalities.
Abstract: Registration is a fundamental task in medical imaging, and recent machine learning methods have become the state-of-the-art. However, these approaches are often not interpretable, lack robustness to large misalignments, and do not incorporate symmetries of the problem. In this work, we propose KeyMorph, an unsupervised end-to-end learning-based image registration framework that relies on automatically detecting corresponding keypoints. Our core insight is straightforward: matching keypoints between images can be used to obtain the optimal transformation via a differentiable closed-form expression. We use this observation to drive the unsupervised learning of anatomically-consistent keypoints from images. This not only leads to substantially more robust registration but also yields better interpretability, since the keypoints reveal which parts of the image are driving the final alignment. Moreover, KeyMorph can be designed to be equivariant under image translations and/or symmetric with respect to the input image ordering. We demonstrate the proposed framework in solving 3D affine registration of multi-modal brain MRI scans. Remarkably, we show that this strategy leads to consistent keypoints, even across modalities. We demonstrate registration accuracy that surpasses current state-of-the-art methods, especially in the context of large displacements. Our code is available at https://github.com/evanmy/keymorph

4 citations


Journal ArticleDOI
TL;DR: In this article , an ensemble approach is proposed to create encoding models for novel individuals with relatively little data by modeling each subject's predicted response vector as a linear combination of the other subjects' predicted response vectors.
Abstract: Quantifying population heterogeneity in brain stimuli-response mapping may allow insight into variability in bottom-up neural systems that can in turn be related to individual's behavior or pathological state. Encoding models that predict brain responses to stimuli are one way to capture this relationship. However, they generally need a large amount of fMRI data to achieve optimal accuracy. Here, we propose an ensemble approach to create encoding models for novel individuals with relatively little data by modeling each subject's predicted response vector as a linear combination of the other subjects' predicted response vectors. We show that these ensemble encoding models trained with hundreds of image-response pairs, achieve accuracy not different from models trained on 20,000 image-response pairs. Importantly, the ensemble encoding models preserve patterns of inter-individual differences in the image-response relationship. We also show the proposed approach is robust against domain shift by validating on data with a different scanner and experimental setup. Additionally, we show that the ensemble encoding models are able to discover the inter-individual differences in various face areas' responses to images of animal vs human faces using a recently developed NeuroGen framework. Our approach shows the potential to use existing densely-sampled data, i.e. large amounts of data collected from a single individual, to efficiently create accurate, personalized encoding models and, subsequently, personalized optimal synthetic images for new individuals scanned under different experimental conditions.

4 citations


Journal ArticleDOI
TL;DR: In this paper , a learned acquisition and reconstruction optimization (LARO) framework is proposed to accelerate the multi-echo gradient echo (mGRE) pulse sequence for QSM.

3 citations


Journal ArticleDOI
22 Feb 2022
TL;DR: This work presents a hypernetwork-based approach, called HyperRecon, to train reconstruction models that are agnostic to hyperparameter settings, and demonstrates the method in compressed sensing, super-resolution and denoising tasks, using two large-scale and publicly-available MRI datasets.
Abstract: Deep learning based techniques achieve state-of-the-art results in a wide range of image reconstruction tasks like compressed sensing. These methods almost always have hyperparameters, such as the weight coefficients that balance the different terms in the optimized loss function. The typical approach is to train the model for a hyperparameter setting determined with some empirical or theoretical justification. Thus, at inference time, the model can only compute reconstructions corresponding to the pre-determined hyperparameter values. In this work, we present a hypernetwork-based approach, called HyperRecon, to train reconstruction models that are agnostic to hyperparameter settings. At inference time, HyperRecon can efficiently produce diverse reconstructions, which would each correspond to different hyperparameter values. In this framework, the user is empowered to select the most useful output(s) based on their own judgement. We demonstrate our method in compressed sensing, super-resolution and denoising tasks, using two large-scale and publicly-available MRI datasets. Our code is available at https://github.com/alanqrwang/hyperrecon.

3 citations


Journal ArticleDOI
TL;DR: In this paper , a detailed empirical analysis comparing expert neuropathologists and ML models at predicting IDH mutation status in H&E-stained histology slides of infiltrating gliomas, both independently and synergistically, is presented.
Abstract: While Machine Learning (ML) models have been increasingly applied to a range of histopathology tasks, there has been little emphasis on characterizing these models and contrasting them with human experts. We present a detailed empirical analysis comparing expert neuropathologists and ML models at predicting IDH mutation status in H&E-stained histology slides of infiltrating gliomas, both independently and synergistically. We find that errors made by neuropathologists and ML models trained using the TCGA dataset are distinct, representing modest agreement between predictions (human-vs.-human κ = 0.656; human-vs.-ML model κ = 0.598). While no ML model surpassed human performance on an independent institutional test dataset (human AUC = 0.901, max ML AUC = 0.881), a hybrid model aggregating human and ML predictions demonstrates predictive performance comparable to the consensus of two expert neuropathologists (hybrid classifier AUC = 0.921 vs. two-neuropathologist consensus AUC = 0.920). We also show that models trained at different levels of magnification exhibit different types of errors, supporting the value of aggregation across spatial scales in the ML approach. Finally, we present a detailed interpretation of our multi-scale ML ensemble model which reveals that predictions are driven by human-identifiable features at the patch-level.

3 citations


Journal ArticleDOI
TL;DR: Text2Brain this paper uses a transformer-based neural network language model and a coordinate-based meta-analysis of neuroimaging studies to synthesize brain activation maps from open-ended text queries.

2 citations


Proceedings Article
24 May 2022
TL;DR: Semi-parametric inducing point networks (SPIN) as mentioned in this paper can query the training set at inference time in a compute-efficient manner, achieving linear complexity via a cross-attention mechanism between data points inspired by inducing point methods.
Abstract: We introduce semi-parametric inducing point networks (SPIN), a general-purpose architecture that can query the training set at inference time in a compute-efficient manner. Semi-parametric architectures are typically more compact than parametric models, but their computational complexity is often quadratic. In contrast, SPIN attains linear complexity via a cross-attention mechanism between datapoints inspired by inducing point methods. Querying large training sets can be particularly useful in meta-learning, as it unlocks additional training signal, but often exceeds the scaling limits of existing models. We use SPIN as the basis of the Inducing Point Neural Process, a probabilistic model which supports large contexts in meta-learning and achieves high accuracy where existing models fail. In our experiments, SPIN reduces memory requirements, improves accuracy across a range of meta-learning tasks, and improves state-of-the-art performance on an important practical problem, genotype imputation.

1 citations



Journal ArticleDOI
TL;DR: In this paper , the authors propose a non-learnable and nonparametric Nadaraya-Watson (NW) prediction head that can be used with any neural network architecture, where the weights are computed from distances between the query feature and support features.
Abstract: In this paper, we empirically analyze a simple, non-learnable, and nonparametric Nadaraya-Watson (NW) prediction head that can be used with any neural network architecture. In the NW head, the prediction is a weighted average of labels from a support set. The weights are computed from distances between the query feature and support features. This is in contrast to the dominant approach of using a learnable classification head (e.g., a fully-connected layer) on the features, which can be challenging to interpret and can yield poorly calibrated predictions. Our empirical results on an array of computer vision tasks demonstrate that the NW head can yield better calibration than its parametric counterpart, while having comparable accuracy and with minimal computational overhead. To further increase inference-time efficiency, we propose a simple approach that involves a clustering step run on the training set to create a relatively small distilled support set. In addition to using the weights as a means of interpreting model predictions, we further present an easy-to-compute “support influence function,” which quantifies the influence of a support element on the prediction for a given query. As we demonstrate in our experiments, the influence function can allow the user to debug a trained model. We believe that the NW head is a flexible, interpretable, and highly useful building block that can be used in a range of applications.

Journal Article
07 Dec 2022
TL;DR: In this paper , the authors empirically analyze a simple, non-learnable, and nonparametric Nadaraya-Watson (NW) prediction head that can be used with any neural network architecture.
Abstract: In this paper, we empirically analyze a simple, non-learnable, and nonparametric Nadaraya-Watson (NW) prediction head that can be used with any neural network architecture. In the NW head, the prediction is a weighted average of labels from a support set. The weights are computed from distances between the query feature and support features. This is in contrast to the dominant approach of using a learnable classification head (e.g., a fully-connected layer) on the features, which can be challenging to interpret and can yield poorly calibrated predictions. Our empirical results on an array of computer vision tasks demonstrate that the NW head can yield better calibration with comparable accuracy compared to its parametric counterpart, particularly in data-limited settings. To further increase inference-time efficiency, we propose a simple approach that involves a clustering step run on the training set to create a relatively small distilled support set. Furthermore, we explore two means of interpretability/explainability that fall naturally from the NW head. The first is the label weights, and the second is our novel concept of the ``support influence function,'' which is an easy-to-compute metric that quantifies the influence of a support element on the prediction for a given query. As we demonstrate in our experiments, the influence function can allow the user to debug a trained model. We believe that the NW head is a flexible, interpretable, and highly useful building block that can be used in a range of applications.

Journal ArticleDOI
TL;DR: The approach GLACIAL treats individuals as independent samples and uses average prediction accuracy on hold-out individuals to test for effects of causal relationships, which em-ploys a multi-task neural network trained with input feature dropout to learn nonlinear dynamic relationships between a large number of variables, handle missing values, and probe causal links.
Abstract: The Granger framework is widely used for discovering causal relationships based on time-varying signals. Implementations of Granger causality (GC) are mostly developed for densely sampled timeseries data. A substantially different setting, particularly common in population health applications, is the longitudinal study design, where multiple individuals are followed and sparsely observed for a limited number of times. Longitudinal studies commonly track many variables, which are likely governed by nonlinear dynamics that might have individual-specific id-iosyncrasies and exhibit both direct and indirect causes. Furthermore, real-world longitudinal data often suffer from widespread missingness. GC methods are not well-suited to handle these issues. In this paper, we intend to fill this methodological gap. We propose to marry the GC framework with a machine learning based prediction model. We call our approach GLACIAL, which stands for “Granger and LeArning-based CausalIty Analysis for Longitudinal studies.” GLACIAL treats individuals as independent samples and uses average prediction accuracy on hold-out individuals to test for effects of causal relationships. GLACIAL em-ploys a multi-task neural network trained with input feature dropout to efficiently learn nonlinear dynamic relationships between a large number of variables, handle missing values, and probe causal links. Extensive experiments on synthetic and real data demonstrate the utility of GLACIAL and how it can outperform competitive baselines. Preliminary work.

Journal ArticleDOI
TL;DR: In this paper , a simple convolutional neural network (CNN) with MPMRI can achieve high performance for detection of clinically significant PCa (csPCa), depending on the pulse sequences used.

Proceedings ArticleDOI
17 Mar 2022
TL;DR: The proposed method, called label conditioned segmentation (LCS), can be used to segment images with a very large number of classes, which might be infeasible for the baseline approach, and can improve the accuracy of a given backbone architecture.
Abstract: Semantic segmentation is an important task in computer vision that is often tackled with convolutional neural networks (CNNs). A CNN learns to produce pixel-level predictions through training on pairs of images and their corresponding ground-truth segmentation labels. For segmentation tasks with multiple classes, the standard approach is to use a network that computes a multi-channel probabilistic segmentation map, with each channel representing one class. In applications where the image grid size (e.g., when it is a 3D volume) and/or the number of labels is relatively large, the standard (baseline) approach can become prohibitively expensive for our computational resources. In this paper, we propose a simple yet effective method to address this challenge. In our approach, the segmentation network produces a single-channel output, while being conditioned on a single class label, which determines the output class of the network. Our method, called label conditioned segmentation (LCS), can be used to segment images with a very large number of classes, which might be infeasible for the baseline approach. We also demonstrate in the experiments that label conditioning can improve the accuracy of a given backbone architecture, likely, thanks to its parameter efficiency. Finally, as we show in our results, an LCS model can produce previously unseen fine-grained labels during inference time, when only coarse labels were available during training. We provide all of our code here: https://github.com/tym002/Label-conditioned-segmentation

Journal ArticleDOI
TL;DR: SPIN is introduced, a general-purpose semi-parametric neural architecture whose computational cost is linear in the size and dimensionality of the data and improves state-of-the-art performance on an important practical problem, genotype imputation.
Abstract: Recent advances in deep learning have been driven by large-scale parametric models, which can be computationally expensive and lack interpretability. Semi-parametric methods query the training set at inference time and can be more compact, although they typically have quadratic computational complexity. Here, we introduce SPIN, a general-purpose semi-parametric neural architecture whose computational cost is linear in the size and dimensionality of the data. Our architecture is inspired by inducing point methods and relies on a novel application of cross-attention between datapoints. At inference time, its computational cost is constant in the training set size as the data gets distilled into a fixed number of inducing points. We find that our method reduces the computational requirements of existing semi-parametric models by up to an order of magnitude across a range of datasets and improves state-of-the-art performance on an important practical problem, genotype imputation.

Journal Article
TL;DR: The hyperconvolution is presented, a novel building block that implicitly encodes the convolutional kernel using spatial coordinates, enabling a more flexible architecture design and demonstrating in experiments that replacing regular convolutions with hyper-convolutions can improve performance with less parameters, and increase robustness against noise.
Abstract: The convolutional neural network (CNN) is one of the most commonly used architectures for computer vision tasks. The key building block of a CNN is the convolutional kernel that aggregates information from the pixel neighborhood and shares weights across all pixels. A standard CNN's capacity, and thus its performance, is directly related to the number of learnable kernel weights, which is determined by the number of channels and the kernel size (support). In this paper, we present the \textit{hyper-convolution}, a novel building block that implicitly encodes the convolutional kernel using spatial coordinates. Hyper-convolutions decouple kernel size from the total number of learnable parameters, enabling a more flexible architecture design. We demonstrate in our experiments that replacing regular convolutions with hyper-convolutions can improve performance with less parameters, and increase robustness against noise. We provide our code here: \emph{https://github.com/tym002/Hyper-Convolution}