scispace - formally typeset
Search or ask a question

Showing papers by "Michael F. McDermott published in 2005"


Journal ArticleDOI
TL;DR: Synthetic anti-TNF agents provide a rational form of therapy for TRAPS, and have been shown to delay or indeed prevent development of systemic amyloidosis (AA type), a life-threatening complication in this condition.
Abstract: The tumour necrosis factor receptor (TNFR)-associated periodic syndrome (TRAPS) is an autosomal dominant, multisystemic, autoinflammatory disorder caused by mutations in the TNFR1 gene ( TNFRSF1A ). Traps seems to be the most common hereditary periodic fever (HPF) syndrome in some western populations, and the second most prevalent HPF worldwide, behind familial mediterranean fever (FMF). The proteins involved in susceptibility to TRAPS (TNFRSF1A) and FMF (pyrin) are both members of the death-domain-fold superfamily. Mutations affecting these proteins might cause dysregulation of innate immune responses, with a propensity to autoinflammation. Most TRAPS patients have reduced blood levels of soluble TNFRSF1A between attacks, with an inappropriately small increase during bouts of fever. The pathogenesis of the 'hyperinflammatory state' in TRAPS has been variously ascribed to a shedding defect of TNFRSF1A from the cell surface resulting in increased TNF inflammatory signalling, or impaired TNF apoptotic signalling. Some low-penetrance TNFRSF1A variants also contribute to the clinical phenotype in individuals carrying other HPF-associated mutations, and have been reported in several disorders such as Behcet's disease and systemic lupus erythematosus. Synthetic anti-TNF agents provide a rational form of therapy for TRAPS, and have been shown to delay or indeed prevent development of systemic amyloidosis (AA type), a life-threatening complication in this condition.

79 citations


Journal ArticleDOI
TL;DR: The T50K TRAPS-related variant is capable of sustaining inappropriate NF-κB activation, resulting in persistent autoinflammation in target organs such as skin, synovial membrane, and the central nervous system.
Abstract: Objective To investigate the molecular consequences of expressing mutated forms of tumor necrosis factor receptor I (TNFRI) as found in patients with TNFR-associated periodic syndrome (TRAPS). Methods We cloned and expressed full-length wild-type (WT) and T50K and P46L variants of TNFRI using a new tightly regulated doxycycline-dependent expression system. This system enabled the study of molecular interactions between these receptors at both physiologic and pathophysiologic levels of expression. Results We used chemical crosslinking on the cell surface to show that WT and mutant forms of TNFRI, derived from TRAPS patients, interact in the absence of TNF ligand. Doxycycline-controlled up-regulation of one TNFRI allele, either WT or mutant, caused down-regulation of the other allele, indicating dynamic control of cell surface assembly. We also demonstrated that increased expression of mutant TNFRI (T50K) was associated with a parallel increase in NF-κB p65 (RelA) subunit activation, which did not occur with increased expression of WT TNFRI. Conclusion The T50K TRAPS-related variant is capable of sustaining inappropriate NF-κB activation, resulting in persistent autoinflammation in target organs such as skin, synovial membrane, and the central nervous system. We conclude that some of the inflammatory processes seen in TRAPS do not involve direct interaction of TNF with its receptors, but that other proinflammatory mechanisms capable of up-regulating TNFRI expression may cause cellular activation through the NF-κB signaling pathway.

68 citations