scispace - formally typeset
Search or ask a question
Author

Michael J. Berry

Other affiliations: Harvard University
Bio: Michael J. Berry is an academic researcher from Princeton University. The author has contributed to research in topics: Retinal ganglion & Population. The author has an hindex of 41, co-authored 89 publications receiving 12630 citations. Previous affiliations of Michael J. Berry include Harvard University.


Papers
More filters
Book
10 Jun 1997
TL;DR: One of the first practical guides to mining business data, Data Mining Techniques describes techniques for detecting customer behavior patterns useful in formulating marketing, sales, and customer support strategies.
Abstract: From the Publisher: Data Mining Techniques thoroughly acquaints you with the new generation of data mining tools and techniques and shows you how to use them to make better business decisions. One of the first practical guides to mining business data, it describes techniques for detecting customer behavior patterns useful in formulating marketing, sales, and customer support strategies. While database analysts will find more than enough technical information to satisfy their curiosity, technically savvy business and marketing managers will find the coverage eminently accessible. Here's your chance to learn all about how leading companies across North America are using data mining to beat the competition; how each tool works, and how to pick the right one for the job; seven powerful techniques - cluster detection, memory-based reasoning, market basket analysis, genetic algorithms, link analysis, decision trees, and neural nets, and how to prepare data sources for data mining, and how to evaluate and use the results you get. Data Mining Techniques shows you how to quickly and easily tap the gold mine of business solutions lying dormant in your information systems.

1,823 citations

Journal ArticleDOI
20 Apr 2006-Nature
TL;DR: It is shown, in the vertebrate retina, that weak correlations between pairs of neurons coexist with strongly collective behaviour in the responses of ten or more neurons, and it is found that this collective behaviour is described quantitatively by models that capture the observed pairwise correlations but assume no higher-order interactions.
Abstract: Biological networks have so many possible states that exhaustive sampling is impossible. Successful analysis thus depends on simplifying hypotheses, but experiments on many systems hint that complicated, higher-order interactions among large groups of elements have an important role. Here we show, in the vertebrate retina, that weak correlations between pairs of neurons coexist with strongly collective behaviour in the responses of ten or more neurons. We find that this collective behaviour is described quantitatively by models that capture the observed pairwise correlations but assume no higher-order interactions. These maximum entropy models are equivalent to Ising models, and predict that larger networks are completely dominated by correlation effects. This suggests that the neural code has associative or error-correcting properties, and we provide preliminary evidence for such behaviour. As a first test for the generality of these ideas, we show that similar results are obtained from networks of cultured cortical neurons.

1,788 citations

Book
01 Jan 2004
TL;DR: Data Mining Techniques, Third Edition covers a new data mining technique with each successive chapter and then demonstrates how you can apply that technique for improved marketing, sales, and customer support to get immediate results.
Abstract: The leading introductory book on data mining, fully updated and revised!When Berry and Linoff wrote the first edition of Data Mining Techniques in the late 1990s, data mining was just starting to move out of the lab and into the office and has since grown to become an indispensable tool of modern business. This new editionmore than 50% new and revisedis a significant update from the previous one, and shows you how to harness the newest data mining methods and techniques to solve common business problems. The duo of unparalleled authors share invaluable advice for improving response rates to direct marketing campaigns, identifying new customer segments, and estimating credit risk. In addition, they cover more advanced topics such as preparing data for analysis and creating the necessary infrastructure for data mining at your company.Features significant updates since the previous edition and updates you on best practices for using data mining methods and techniques for solving common business problemsCovers a new data mining technique in every chapter along with clear, concise explanations on how to apply each technique immediatelyTouches on core data mining techniques, including decision trees, neural networks, collaborative filtering, association rules, link analysis, survival analysis, and moreProvides best practices for performing data mining using simple tools such as ExcelData Mining Techniques, Third Edition covers a new data mining technique with each successive chapter and then demonstrates how you can apply that technique for improved marketing, sales, and customer support to get immediate results.

1,113 citations

Journal ArticleDOI
TL;DR: The reproducibility of retinal responses to repeated visual stimuli, in both tiger salamander and rabbit, is measured to show that the timing of a firing event conveyed several times more visual information than its spike count.
Abstract: Assessing the reliability of neuronal spike trains is fundamental to an understanding of the neural code. We measured the reproducibility of retinal responses to repeated visual stimuli. In both tiger salamander and rabbit, the retinal ganglion cells responded to random flicker with discrete, brief periods of firing. For any given cell, these firing events covered only a small fraction of the total stimulus time, often less than 5%. Firing events were very reproducible from trial to trial: the timing jitter of individual spikes was as low as 1 msec, and the standard deviation in spike count was often less than 0.5 spikes. Comparing the precision of spike timing to that of the spike count showed that the timing of a firing event conveyed several times more visual information than its spike count. This sparseness and precision were general characteristics of ganglion cell responses, maintained over the broad ensemble of stimulus waveforms produced by random flicker, and over a range of contrasts. Thus, the responses of retinal ganglion cells are not properly described by a firing probability that varies continuously with the stimulus. Instead, these neurons elicit discrete firing events that may be the fundamental coding symbols in retinal spike trains.

543 citations

Journal ArticleDOI
TL;DR: This work distinguishes questions about how information is encoded by a population of neurons from how that information can be decoded, and shows that these measures form an interrelated framework for evaluating contributions of signal and noise correlations to the joint information conveyed about the stimulus.
Abstract: A key issue in understanding the neural code for an ensemble of neurons is the nature and strength of correlations between neurons and how these correlations are related to the stimulus. The issue is complicated by the fact that there is not a single notion of independence or lack of correlation. We distinguish three kinds: (1) activity independence; (2) conditional independence; and (3) information independence. Each notion is related to an information measure: the information between cells, the information between cells given the stimulus, and the synergy of cells about the stimulus, respectively. We show that these measures form an interrelated framework for evaluating contributions of signal and noise correlations to the joint information conveyed about the stimulus and that at least two of the three measures must be calculated to characterize a population code. This framework is compared with others recently proposed in the literature. In addition, we distinguish questions about how information is encoded by a population of neurons from how that information can be decoded. Although information theory is natural and powerful for questions of encoding, it is not sufficient for characterizing the process of decoding. Decoding fundamentally requires an error measure that quantifies the importance of the deviations of estimated stimuli from actual stimuli. Because there is no a priori choice of error measure, questions about decoding cannot be put on the same level of generality as for encoding.

534 citations


Cited by
More filters
Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Book
25 Oct 1999
TL;DR: This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Abstract: Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. *Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects *Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods *Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

20,196 citations

Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
TL;DR: This article reviews studies investigating complex brain networks in diverse experimental modalities and provides an accessible introduction to the basic principles of graph theory and highlights the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
Abstract: Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks--such as small-world topology, highly connected hubs and modularity--both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.

9,700 citations

Book ChapterDOI
04 Jul 2014

4,238 citations