scispace - formally typeset
Search or ask a question

Showing papers by "Miguel Ángel González Ballester published in 2011"


Journal ArticleDOI
TL;DR: This paper presents methods based on information filters for solving matching problems with emphasis on real time, or effectively real-time applications, and circumvents the need to attach physical markers to bones for anatomical referencing.
Abstract: This paper presents methods based on information filters for solving matching problems with emphasis on real time, or effectively real-time applications. Both applications discussed in this paper deal with ultrasound-based rigid registration in computer-assisted orthopedic surgery. In the first application, the usual workflow of rigid registration is reformulated such that registration algorithms would iterate while the surgeon is acquiring ultrasound images of the anatomy to be operated. Using this effectively real-time approach to registration, the surgeon would then receive feedback in order to better gauge the quality of the final registration outcome. The second application considered in this paper circumvents the need to attach physical markers to bones for anatomical referencing. Experiments using anatomical objects immersed in water are performed in order to evaluate and compare the different methods presented herein, using both 2-D as well as real-time 3-D ultrasound.

11 citations


Book ChapterDOI
TL;DR: A standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments is provided and an energy based method which performs independently of the dimension is introduced.
Abstract: Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.

9 citations