scispace - formally typeset
Search or ask a question
Author

Muhammad Sajjad

Bio: Muhammad Sajjad is an academic researcher from Islamia College University. The author has contributed to research in topics: Automatic summarization & Convolutional neural network. The author has an hindex of 28, co-authored 73 publications receiving 2346 citations. Previous affiliations of Muhammad Sajjad include Norwegian University of Science and Technology & Sejong University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: A novel action recognition method by processing the video data using convolutional neural network (CNN) and deep bidirectional LSTM (DB-LSTM) network that is capable of learning long term sequences and can process lengthy videos by analyzing features for a certain time interval.
Abstract: Recurrent neural network (RNN) and long short-term memory (LSTM) have achieved great success in processing sequential multimedia data and yielded the state-of-the-art results in speech recognition, digital signal processing, video processing, and text data analysis. In this paper, we propose a novel action recognition method by processing the video data using convolutional neural network (CNN) and deep bidirectional LSTM (DB-LSTM) network. First, deep features are extracted from every sixth frame of the videos, which helps reduce the redundancy and complexity. Next, the sequential information among frame features is learnt using DB-LSTM network, where multiple layers are stacked together in both forward pass and backward pass of DB-LSTM to increase its depth. The proposed method is capable of learning long term sequences and can process lengthy videos by analyzing features for a certain time interval. Experimental results show significant improvements in action recognition using the proposed method on three benchmark data sets including UCF-101, YouTube 11 Actions, and HMDB51 compared with the state-of-the-art action recognition methods.

529 citations

Journal ArticleDOI
TL;DR: A novel convolutional neural network (CNN) based multi-grade brain tumor classification system that is experimentally evaluated on both augmented and original data and results show its convincing performance compared to existing methods.

471 citations

Journal ArticleDOI
TL;DR: The proposed model is an effective alternative to the previous hybrid models in terms of computational complexity as well prediction accuracy, due to the representative features’ extraction potentials of CNNs and effectual gated structure of multi-layered GRU.
Abstract: Electric energy forecasting domain attracts researchers due to its key role in saving energy resources, where mainstream existing models are based on Gradient Boosting Regression (GBR), Artificial Neural Networks (ANNs), Extreme Learning Machine (ELM) and Support Vector Machine (SVM). These models encounter high-level of non-linearity between input data and output predictions and limited adoptability in real-world scenarios. Meanwhile, energy forecasting domain demands more robustness, higher prediction accuracy and generalization ability for real-world implementation. In this paper, we achieve the mentioned tasks by developing a hybrid sequential learning-based energy forecasting model that employs Convolution Neural Network (CNN) and Gated Recurrent Units (GRU) into a unified framework for accurate energy consumption prediction. The proposed framework has two major phases: (1) data refinement and (2) training, where the data refinement phase applies preprocessing strategies over raw data. In the training phase, CNN features are extracted from input dataset and fed in to GRU, that is selected as optimal and observed to have enhanced sequence learning abilities after extensive experiments. The proposed model is an effective alternative to the previous hybrid models in terms of computational complexity as well prediction accuracy, due to the representative features' extraction potentials of CNNs and effectual gated structure of multi-layered GRU. The experimental evaluation over existing energy forecasting datasets reveal the better performance of our method in terms of preciseness and efficiency. The proposed method achieved the smallest error rate on Appliances Energy Prediction (AEP) and Individual Household Electric Power Consumption (IHEPC) datasets, when compared to other baseline models.

204 citations

Journal ArticleDOI
TL;DR: A novel framework for SER is introduced using a key sequence segment selection based on redial based function network (RBFN) similarity measurement in clusters to reduce the computational complexity of the overall model and normalize the CNN features before their actual processing, so that it can easily recognize the Spatio-temporal information.
Abstract: Emotional state recognition of a speaker is a difficult task for machine learning algorithms which plays an important role in the field of speech emotion recognition (SER). SER plays a significant role in many real-time applications such as human behavior assessment, human-robot interaction, virtual reality, and emergency centers to analyze the emotional state of speakers. Previous research in this field is mostly focused on handcrafted features and traditional convolutional neural network (CNN) models used to extract high-level features from speech spectrograms to increase the recognition accuracy and overall model cost complexity. In contrast, we introduce a novel framework for SER using a key sequence segment selection based on redial based function network (RBFN) similarity measurement in clusters. The selected sequence is converted into a spectrogram by applying the STFT algorithm and passed into the CNN model to extract the discriminative and salient features from the speech spectrogram. Furthermore, we normalize the CNN features to ensure precise recognition performance and feed them to the deep bi-directional long short-term memory (BiLSTM) to learn the temporal information for recognizing the final state of emotion. In the proposed technique, we process the key segments instead of the whole utterance to reduce the computational complexity of the overall model and normalize the CNN features before their actual processing, so that it can easily recognize the Spatio-temporal information. The proposed system is evaluated over different standard dataset including IEMOCAP, EMO-DB, and RAVDESS to improve the recognition accuracy and reduce the processing time of the model, respectively. The robustness and effectiveness of the suggested SER model is proved from the experimentations when compared to state-of-the-art SER methods with an achieve up to 72.25%, 85.57%, and 77.02% accuracy over IEMOCAP, EMO-DB, and RAVDESS dataset, respectively.

190 citations

Journal ArticleDOI
TL;DR: Experimental results validate that the proposed method not only enhances the visual quality of stego images but also provides good imperceptibility and multiple security levels as compared to several existing prominent methods.
Abstract: Image Steganography is a thriving research area of information security where secret data is embedded in images to hide its existence while getting the minimum possible statistical detectability. This paper proposes a novel magic least significant bit substitution method (M-LSB-SM) for RGB images. The proposed method is based on the achromatic component (I-plane) of the hue-saturation-intensity (HSI) color model and multi-level encryption (MLE) in the spatial domain. The input image is transposed and converted into an HSI color space. The I-plane is divided into four sub-images of equal size, rotating each sub-image with a different angle using a secret key. The secret information is divided into four blocks, which are then encrypted using an MLE algorithm (MLEA). Each sub-block of the message is embedded into one of the rotated sub-images based on a specific pattern using magic LSB substitution. Experimental results validate that the proposed method not only enhances the visual quality of stego images but also provides good imperceptibility and multiple security levels as compared to several existing prominent methods.

151 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Deep Convolutional Neural Networks (CNNs) as mentioned in this paper are a special type of Neural Networks, which has shown exemplary performance on several competitions related to Computer Vision and Image Processing.
Abstract: Deep Convolutional Neural Network (CNN) is a special type of Neural Networks, which has shown exemplary performance on several competitions related to Computer Vision and Image Processing. Some of the exciting application areas of CNN include Image Classification and Segmentation, Object Detection, Video Processing, Natural Language Processing, and Speech Recognition. The powerful learning ability of deep CNN is primarily due to the use of multiple feature extraction stages that can automatically learn representations from the data. The availability of a large amount of data and improvement in the hardware technology has accelerated the research in CNNs, and recently interesting deep CNN architectures have been reported. Several inspiring ideas to bring advancements in CNNs have been explored, such as the use of different activation and loss functions, parameter optimization, regularization, and architectural innovations. However, the significant improvement in the representational capacity of the deep CNN is achieved through architectural innovations. Notably, the ideas of exploiting spatial and channel information, depth and width of architecture, and multi-path information processing have gained substantial attention. Similarly, the idea of using a block of layers as a structural unit is also gaining popularity. This survey thus focuses on the intrinsic taxonomy present in the recently reported deep CNN architectures and, consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature-map exploitation, channel boosting, and attention. Additionally, the elementary understanding of CNN components, current challenges, and applications of CNN are also provided.

1,328 citations

Journal ArticleDOI
01 Sep 2019-Energy
TL;DR: This paper proposes a CNN-LSTM neural network that can extract spatial and temporal features to effectively predict the housing energy consumption and achieves almost perfect prediction performance for electric energy consumption that was previously difficult to predict.

677 citations

Journal ArticleDOI
TL;DR: A hybrid intelligent machine learning technique for computer-aided detection system for automatic detection of brain tumor through magnetic resonance images is proposed and demonstrates its effectiveness compared with the other machine learning recently published techniques.
Abstract: Computer-aided detection/diagnosis (CAD) systems can enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. The objective of this paper is to review the recent published segmentation and classification techniques and their state-of-the-art for the human brain magnetic resonance images (MRI). The review reveals the CAD systems of human brain MRI images are still an open problem. In the light of this review we proposed a hybrid intelligent machine learning technique for computer-aided detection system for automatic detection of brain tumor through magnetic resonance images. The proposed technique is based on the following computational methods; the feedback pulse-coupled neural network for image segmentation, the discrete wavelet transform for features extraction, the principal component analysis for reducing the dimensionality of the wavelet coefficients, and the feed forward back-propagation neural network to classify inputs into normal or abnormal. The experiments were carried out on 101 images consisting of 14 normal and 87 abnormal (malignant and benign tumors) from a real human brain MRI dataset. The classification accuracy on both training and test images is 99% which was significantly good. Moreover, the proposed technique demonstrates its effectiveness compared with the other machine learning recently published techniques. The results revealed that the proposed hybrid approach is accurate and fast and robust. Finally, possible future directions are suggested.

482 citations

Journal ArticleDOI
TL;DR: A novel convolutional neural network (CNN) based multi-grade brain tumor classification system that is experimentally evaluated on both augmented and original data and results show its convincing performance compared to existing methods.

471 citations

Posted Content
TL;DR: This review introduces the history of CNN, some classic and advanced CNN models are introduced, and an overview of various convolutions is provided, including those key points making them reach state-of-the-art results.
Abstract: Convolutional Neural Network (CNN) is one of the most significant networks in the deep learning field. Since CNN made impressive achievements in many areas, including but not limited to computer vision and natural language processing, it attracted much attention both of industry and academia in the past few years. The existing reviews mainly focus on the applications of CNN in different scenarios without considering CNN from a general perspective, and some novel ideas proposed recently are not covered. In this review, we aim to provide novel ideas and prospects in this fast-growing field as much as possible. Besides, not only two-dimensional convolution but also one-dimensional and multi-dimensional ones are involved. First, this review starts with a brief introduction to the history of CNN. Second, we provide an overview of CNN. Third, classic and advanced CNN models are introduced, especially those key points making them reach state-of-the-art results. Fourth, through experimental analysis, we draw some conclusions and provide several rules of thumb for function selection. Fifth, the applications of one-dimensional, two-dimensional, and multi-dimensional convolution are covered. Finally, some open issues and promising directions for CNN are discussed to serve as guidelines for future work.

465 citations