scispace - formally typeset
Search or ask a question

Showing papers by "Neri Oxman published in 2017"


Journal ArticleDOI
26 Apr 2017
TL;DR: The Digital Construction Platform is presented, an automated construction system capable of customized on-site fabrication of architectural-scale structures using real-time environmental data for process control and early exploratory steps toward self-sufficiency are discussed along with proposed future applications for autonomous construction.
Abstract: Contemporary construction techniques are slow, labor-intensive, dangerous, expensive, and constrained to primarily rectilinear forms, often resulting in homogenous structures built using materials sourced from centralized factories. To begin to address these issues, we present the Digital Construction Platform (DCP), an automated construction system capable of customized on-site fabrication of architectural-scale structures using real-time environmental data for process control. The system consists of a compound arm system composed of hydraulic and electric robotic arms carried on a tracked mobile platform. An additive manufacturing technique for constructing insulated formwork with gradient properties from dynamic mixing was developed and implemented with the DCP. As a case study, a 14.6-m-diameter, 3.7-m-tall open dome formwork structure was successfully additively manufactured on site with a fabrication time under 13.5 hours. The DCP system was characterized and evaluated in comparison with traditional construction techniques and existing large-scale digital construction research projects. Benefits in safety, quality, customization, speed, cost, and functionality were identified and reported upon. Early exploratory steps toward self-sufficiency—including photovoltaic charging and the sourcing and use of local materials—are discussed along with proposed future applications for autonomous construction.

151 citations



Journal ArticleDOI
TL;DR: A minimal geometrical model—and a methodology—is proposed to reliably control the morphology of patterns, so that these building blocks can be assembled into larger structures with tailored functionally and optically tunable properties.
Abstract: We present a fluid-instability-based approach for digitally fabricating geometrically complex uniformly sized structures in molten glass. Formed by mathematically defined and physically characterized instability patterns, such structures are produced via the additive manufacturing of optically transparent glass, and result from the coiling of an extruded glass thread. We propose a minimal geometrical model-and a methodology-to reliably control the morphology of patterns, so that these building blocks can be assembled into larger structures with tailored functionally and optically tunable properties.This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications'.

23 citations


Patent
20 Jun 2017
TL;DR: In this article, an unorganized point cloud is converted into binary raster layers, which encode material deposition instructions for a multi-material 3D printer, without producing a 3D voxel representation of the object to be printed.
Abstract: An unorganized point cloud may be created by an optical 3D scanner that scans a physical object, or by computer simulation. The point cloud may be converted into binary raster layers, which encode material deposition instructions for a multi-material 3D printer. In many cases, this conversion—from point cloud to binary raster files—is achieved without producing a 3D voxel representation and without producing a boundary representation of the object to be printed. The conversion may involve spatial queries to find nearby points, filtering material properties of the found points, looking up material mixing ratios, and dithering to produce binary raster files. These raster files may be sent to a multi-material 3D printer to control fabrication of an object. A user interface may display a preview of the object to be printed, and may accept user input to create or modify a point cloud.

12 citations