scispace - formally typeset
Search or ask a question

Showing papers by "Nicholas J. Strausfeld published in 1996"


Journal ArticleDOI
TL;DR: In this article, it was shown that the retinotopic pathway defined by small-field bushy T-cells (T4) demonstrates only weak directional selectivity to motion, in contrast with previously demonstrated strong directional selectivities in the second, T5-cell, pathway.
Abstract: The neural circuitry of motion processing in insects, as in primates, involves the segregation of different types of visual information into parallel retinotopic pathways that subsequently are reunited at higher levels. In insects, achromatic, motion-sensitive pathways to the lobula plate are separated from color-processing pathways to the lobula. Further parallel subdivisions of the retinotopic pathways to the lobula plate have been suggested from anatomical observations. Here, we provide direct physiological evidence that the two most prominent of these latter pathways are, indeed, functionally distinct: recordings from the retinotopic pathway defined by small-field bushy T-cells (T4) demonstrate only weak directional selectivity to motion, in striking contrast with previously demonstrated strong directional selectivity in the second, T5-cell, pathway. Additional intracellular recordings and anatomical descriptions have been obtained from other identified neurons that may be crucial in early motion detection and processing: a deep medulla amacrine cell that seems well suited to provide the lateral interactions among retinotopic elements required for motion detection; a unique class of Y-cells that provide small-field, directionally selective feedback from the lobula plate to the medulla; and a new heterolateral lobula plate tangential cell that collates directional, motion-sensitive inputs. These results add important new elements to the set of identified neurons that process motion information. The results suggest specific hypotheses regarding the neuronal substrates for motion-processing circuitry and corroborate behavioral studies in bees that predict distinct pathways for directional and nondirectional motion.

111 citations


Journal ArticleDOI
TL;DR: The results demonstrate that an evolutionarily conserved subset of neurons corresponds to small retinotopic neurons implicated in motion-detecting circuits that link the retina to motion-sensitive neuropils of the lobula plate.
Abstract: The Hassenstein–Reichardt autocorrelation model for motion computation was derived originally from studies of optomotor turning reactions of beetles and further refined from studies of houseflies. Its application for explaining a variety of optokinetic behaviors in other insects assumes that neural correlates to the model are principally similar across taxa. This account examines whether this assumption is warranted. The results demonstrate that an evolutionarily conserved subset of neurons corresponds to small retinotopic neurons implicated in motion-detecting circuits that link the retina to motion-sensitive neuropils of the lobula plate. The occurrence of these neurons in basal groups suggests that they must have evolved at least 240 million years before the present time. Functional contiguity among the neurons is suggested by their having layer relationships that are independent of taxon-specific variations such as medulla stratification, the shape of terminals or dendrites, the presence of other taxon-specific neurons, or the absence of orientation-specific motion-sensitive levels in the lobula plate.

61 citations