scispace - formally typeset
Search or ask a question

Showing papers by "Nicholas Takach published in 2013"


Proceedings ArticleDOI
09 Jun 2013
TL;DR: In this article, a horizontal well setup with drillstring under compression, considering the influence of rotation on frictional pressure losses of yield power law (YPL) fluids was investigated.
Abstract: Keeping the drilling fluid equivalent circulating density in the operating window between the pore and fracture pressure is a challenge, particularly when the gap between these two is narrow, such as in offshore applications. To overcome this challenge, accurate estimation of frictional pressure loss in the annulus is essential, especially for multilateral, extended reach and slim hole drilling applications usually encountered in shale gas and/or oil drilling. A better estimation of frictional pressure losses will provide improved well control, optimized bit hydraulics, a better drilling fluid program and pump selection. Field and experimental measurements showed that pressure loss in the annulus is strongly affected by the pipe rotation and eccentricity.Eccentricity will not be constant throughout a wellbore, especially in highly inclined and horizontal sections. In an actual wellbore, because of rotation speed and the applied weight, some portion of the drillstring will undergo compression. As a result, variable eccentricity will be encountered. At high compression, the drillstring will buckle, resulting in sinusoidal or helical buckling configurations.Most of the drilling fluids used today show highly non-Newtonian flow behavior, which can be characterized using the Yield Power Law (YPL). Nevertheless, in the literature, there is limited information and research on YPL fluids flowing through annular geometries with the inner pipe buckled, rotating, and eccentric. Furthermore, there are discrepancies reported between the estimated and measured frictional pressure losses with or without drillstring rotation of YPL fluids, even when the inner pipe is straight.The major focus of this project is on a horizontal well setup with drillstring under compression, considering the influence of rotation on frictional pressure losses of YPL fluids. The test matrix includes flow through the annulus for various buckling modes with and without rotation of the inner pipe. Sinusoidal, helical and transition from sinusoidal to helical configurations with and without the rotation of the drillstring are investigated. Results show a substantial difference of frictional pressure losses between the non-compressed and compressed drillstring.The drilling industry has recently been involved in incidents that show the need for critical improvements for evaluating and avoiding risks in oil/gas drilling. The information obtained from this study can be used to improve the control of bottomhole pressures during extended reach, horizontal, managed pressure, offshore and slim hole drilling applications. This will lead to safer and enhanced optimization of drilling operations.Copyright © 2013 by ASME

16 citations



Journal ArticleDOI
TL;DR: In this article, the effects of change in hole inclination angle from 90 degrees to 70 degrees on cuttings transport with foam under Elevated Pressure and Elevated Temperature (EPET) conditions were studied.
Abstract: Along with the rapidly growing demand and development activities in unconventional resources, is the growth of environmental awareness and concerns among the public. Foam, as an alternative to traditional drilling fluid, is gaining more and more momentum in the drilling industry. Drilling with foam can minimize formation damage, water usage, and drag and torque. Foam also costs less and leaves a much smaller environmental footprint than other commonly used drilling fluids, such as synthetic oil-based fluids, when developing vulnerable formations such as shale gas. As drilling in horizontal and near horizontal sections has become very common, and the need for such sections is increasing, it is very important to understand cuttings transport and hole cleaning issues when drilling with foam in such sections. A team from University of Tulsa Drilling Research Projects (TUDRP) conducted a series of experiments focused on studying the effects of change in hole inclination angle from 90 degrees to 70 degrees on cuttings transport with foam under Elevated Pressure and Elevated Temperature (EPET) conditions. This experimental and theoretical study also includes other influential parameters such as foam quality, foam flow rate, polymer concentration and drill pipe rotary speed. We have observed that there is no significant difference in cuttings concentration and frictional pressure losses as inclination changes from 70 to 90 degrees. Also, an increase in superficial foam velocity reduces cuttings concentration within the annulus. Pipe rotation influences cuttings concentration and frictional pressure losses for low quality foams, but does not have a significant effect on high quality foams. A correlation for the cuttings bed area and a computer simulator are developed for practical design and field applications. The predicted results are compared with experimental results from this study and previous studies. The comparison shows good agreement. We believe that the findings of this paper will help designers with the choice of optimal drilling fluid for drilling horizontal wells in unconventional (shale) gas/oil reservoirs.

3 citations


Proceedings ArticleDOI
07 Jul 2013
TL;DR: In this paper, the authors presented an analytical solution for predicting the transition from laminar to non-laminar flow regime based on Ryan & Johnson's approach using the stability analysis and equation of motion for YPL fluids.
Abstract: It is well known that a Newtonian fluid with the presence of solid particles in suspension behaves non-Newtonian. Higher the solid content, more significant the yield stress of the fluid. Determination of the hydraulic behavior of fluids having a significant yield stress is a challenging task. For engineering purposes, pressure drop within the system, during pipeline transportation, has to be estimated carefully and accurately. Flow regime plays a vital role during hydraulic calculations. The inaccurate determination of flow regime can lead us to large errors in frictional pressure drop calculations and ultimately leads to error in designing and flow assurance point of view, since hydraulic calculations are including a friction factor term, which is a direct function of flow regime. In general, Reynolds number is the main parameter used by the industry for determining the flow regime, and the friction factor. This approach works reasonably accurate for Newtonian fluids. However, as the yield stress of the fluid increases, this conventional technique for determining the flow regime is not as accurate. Although many approaches have been introduced for estimating the flow regime for non-Newtonian fluids, there exists a lack of information and confidence of such predictions for fluids having high yield stress, such as Yield Power Law (YPL) fluids (i.e., Herchel-Bulkley). Display Formula(1)τ=τy+KγmThis study presents an analytical solution for predicting the transition from laminar to non-laminar flow regime based on Ryan & Johnson’s approach using the stability analysis and equation of motion for YPL fluids. Comparing with the experimental results for YPL fluids under different flow conditions, including laminar and non-laminar flow regimes, show that presented approach gives a better estimation of the transition from laminar to non-laminar flow regime than conventional Reynolds number approach. In some cases, it is observed that although the Reynolds number is high, flow is still laminar, which is predicted accurately using the presented model. This study provides a higher accuracy in estimating the flow regime, which leads to a higher confidence in hydraulic designs and determining limitations of the system in concern.Copyright © 2013 by ASME

1 citations


01 Jan 2013
TL;DR: In this paper, the effects of change in hole inclination angle from 90 degrees to 70 degrees on cuttings transport with foam under Elevated Pressure and Elevated Temperature (EPET) conditions were studied.
Abstract: Along with the rapidly growing demand and development activities in unconventional resources, is the growth of environmental awareness and concerns among the public. Foam, as an alternative to traditional drilling fluid, is gaining more and more momentum in the drilling industry. Drilling with foam can minimize formation damage, water usage, and drag and torque. Foam also costs less and leaves a much smaller environmental footprint than other commonly used drilling fluids, such as synthetic oil-based fluids, when developing vulnerable formations such as shale gas. As drilling in horizontal and near horizontal sections has become very common, and the need for such sections is increasing, it is very important to understand cuttings transport and hole cleaning issues when drilling with foam in such sections. A team from University of Tulsa Drilling Research Projects (TUDRP) conducted a series of experiments focused on studying the effects of change in hole inclination angle from 90 degrees to 70 degrees on cuttings transport with foam under Elevated Pressure and Elevated Temperature (EPET) conditions. This experimental and theoretical study also includes other influential parameters such as foam quality, foam flow rate, polymer concentration and drill pipe rotary speed. We have observed that there is no significant difference in cuttings concentration and frictional pressure losses as inclination changes from 70 to 90 degrees. Also, an increase in superficial foam velocity reduces cuttings concentration within the annulus. Pipe rotation influences cuttings concentration and frictional pressure losses for low quality foams, but does not have a significant effect on high quality foams. A correlation for the cuttings bed area and a computer simulator are developed for practical design and field applications. The predicted results are compared with experimental results from this study and previous studies. The comparison shows good agreement. We believe that the findings of this paper will help designers with the choice of optimal drilling fluid for drilling horizontal wells in unconventional (shale) gas/oil reservoirs.