scispace - formally typeset
Search or ask a question
Author

Nikola Žižkovský

Bio: Nikola Žižkovský is an academic researcher. The author has contributed to research in topics: Propulsion & Airplane. The author has an hindex of 1, co-authored 1 publications receiving 1 citations.

Papers
More filters
Journal ArticleDOI

[...]

TL;DR: In this article , an aerodynamic and structural computation framework was produced to develop a more efficient aircraft configuration considering a wing with a distributed electric propulsion and its use in different flight missions.
Abstract: In this paper, an aerodynamic and structural computation framework was produced to develop a more efficient aircraft configuration considering a wing with a distributed electric propulsion and its use in different flight missions. For that reason, a model of a regional airplane was used as a case study. The considered model was a nine-seat light airplane with a cruise speed of 500 km/h at an altitude 9000 m. The design of the distributed system is introduced, then the aerodynamic and structural aspects of the new wing with distributed electric propulsion system are calculated, and finally flight performances are calculated for the purpose of analysis of the DEP effect. The design of the DEP system aimed at meeting the required landing conditions and the masses of its components, such as the electric motors, the control units and the power source of the DEP system were estimated. Aerodynamic calculations included computations of different wing aspect ratios. These calculations take into account the drag of the existing airplane parts such as fuselage and tail surfaces. A modified lifting-line theory was used as a computational tool for the preliminary study. It was used to calculate the wing drag in cruise regime and to determine the distribution of aerodynamic forces and moments. Next, based on aerodynamic calculations and flight envelope, the basic skeletal parts of the wing were designed and the weight of the wing was calculated. Finally, fuel consumption calculations for different wing sizes were made and compared with the original design. The results show that a wing with a 35% reduction in area can reduce fuel consumption by more than 6% while keeping the same overall weight of the aircraft.

2 citations

Journal ArticleDOI

[...]

01 Jan 2019
TL;DR: In this paper, a small airplane is redesigned by using a distributed electrical propulsion (DEP) system and the design procedure is focused on the reduction of fuel consumption in cruise regime with constrained parameters of take-off/landing.
Abstract: In this paper, a small airplane is redesigned by using a distributed electrical propulsion (DEP) system. The design procedure is focused on the reduction of fuel consumption in cruise regime with constrained parameters of take-off/landing. In this case, a one half wing area compared to an original airplane is used. Take-off distance and minimum airspeed for landing is achieved by distributed propellers mounted on the leading edge of the wing. These propellers induce velocity on the wing and thereby increase local dynamic pressure, thus the required lift force can be reached with smaller wing area. Moreover, the distributed propellers are assumed as folded in cruise regime to minimize drag when the main combustion engine provides sufficient power.

1 citations

Journal ArticleDOI

[...]

TL;DR: In this article , the shape of the air nozzles with minimal directional deviation in the non-isothermal flow is optimized by the adjoint method, which makes it possible to further reduce the pressure loss in the distribution element by deforming the shape according to the local sensitivity of cost function on shape deformation.
Abstract: The procedure, which is used in the design of the air nozzle intended to be used on air curtain, is described in this work. The present work is focused on the isolated flow of one air nozzle, while next work will continue with air nozzles constellation. Nozzle reach in the flow field is monitored with and without tangential flow simulating non-isothermal flow. Several basic shapes of nozzles with the same cross-section are evaluated. After searching the design space of the parametric CAD model simulated in isothermal flow – without tangential flow, the best configuration with the longest range were selected. From this smaller set of nozzles was selected one nozzle with the highest directional stability in non-isothermal flow field. The shape of the nozzle with minimal directional deviation in the non-isothermal flow is subsequently optimized by the adjoint method. This method makes it possible to further reduce the pressure loss in the distribution element by deforming the shape according to the local sensitivity of cost function on shape deformation. The final step of design process is to verify effect of modified nozzle on both isothermal and non-isothermal flow filed.

Cited by
More filters
Journal ArticleDOI

[...]

01 Jan 2021
TL;DR: In this paper, the authors focused on the usage of distributed electric propulsion (DEP) in order to increase the aerodynamic efficiency of a ten-seater aircraft by using lifting line theory with blade element momentum theory.
Abstract: This paper is focused on the usage of distributed electric propulsion (DEP) in order to increase aerodynamic efficiency. A ten seats aircraft is used as a case study. New design uses the existing fuselage, tail and turboprop engine, only wing is completely redesigned. The cost function for the design procedure consists of two parts. The first one is aerodynamic efficiency, which has a primary impact on fuel consumption, and the second one is weight of the wing. Lifting line theory with blade element momentum theory is used to design a wing geometry with DEP. Optimal geometry is also verified by CFD simulation. The estimation of the wing weight is needed for the second part of the cost function. This was done by the design of elementary wing parts under CS-23 regulation. The wing is assumed as full-aluminium with two spars. The main goal of this optimization is to redesign the wing for a given range and save as much fuel as possible.
Journal ArticleDOI

[...]

TL;DR: In this article , a full-electric commuter aircraft with fuel cells was designed from scratch, and therefore a great effort was spent to design both propellers (for the tip and distributed electric motors) and the wing flap.
Abstract: The need for environmentally responsible solutions in aircraft technology is now considered the priority for global challenges related to the limited supply of traditional fuel sources and the potential global hazards associated with emissions produced by traditional aircraft propulsion systems. Several projects, including research into highly advanced subsonic aircraft concepts to drastically reduce energy or fuel usage, community noise, and emissions associated with aviation, are currently ongoing. One of the proposed propulsion concepts that address European environmental goals is distributed electric propulsion. This paper deals with the detailed aerodynamic analyses of a full-electric commuter aircraft with fuel cells, which expects two primary electric motors at the wing tip and eight other electric motors distributed along the wingspan as secondary power sources. The main objective was the numerical estimation of propulsive effects in terms of lift capabilities at take-off conditions to quantify the possible reduction of take-off field length. However, the aircraft was designed from scratch, and therefore a great effort was spent to design both propellers (for the tip and distributed electric motors) and the wing flap. In this respect, several numerical tests were performed to obtain one of the best possible flap positions. This research work estimated a reduction of about 14% of the take-off field length due to only the propulsive effects. A greater reduction of up to 27%, if compared to a reference conventional commuter aircraft, could be achieved thanks to a combined effect of distributed propulsion and a refined design of the Fowler flap. On the contrary, a significant increment of pitching moment was found due to distributed propulsion that may have a non-negligible impact on the aircraft stability, control, and trim drag.
Proceedings ArticleDOI

[...]

08 Jun 2023