scispace - formally typeset
Search or ask a question

Showing papers by "Olga Mena published in 2008"


Journal ArticleDOI
TL;DR: In this article, the authors considered a beta-beam setup with an intermediate Lorentz factor gamma=450 and a baseline of 1050 km and analyzed the physics potential of this setup in detail and study two different exposures (1 x 10^{21} and 5 x 10−21} ions-kton-years).
Abstract: In order to address some fundamental questions in neutrino physics a wide, future programme of neutrino oscillation experiments is currently under discussion. Among those, long baseline experiments will play a crucial role in providing information on the value of theta13, the type of neutrino mass ordering and on the value of the CP-violating phase delta, which enters in 3-neutrino oscillations. Here, we consider a beta-beam setup with an intermediate Lorentz factor gamma=450 and a baseline of 1050 km. This could be achieved in Europe with a beta-beam sourced at CERN to a detector located at the Boulby mine in the United Kingdom. We analyse the physics potential of this setup in detail and study two different exposures (1 x 10^{21} and 5 x 10^{21} ions-kton-years). In both cases, we find that the type of neutrino mass hierarchy could be determined at 99% CL, for all values of delta, for sin^2(2 theta13) > 0.03. In the high-exposure scenario, we find that the value of the CP-violating phase delta could be measured with a 99% CL error of ~20 deg if sin^2 (2 theta13) > 10^{-3}, with some sensitivity down to values of sin^2(2 theta13) ~ 10^{-4}. The ability to determine the octant of theta23 is also studied, and good prospects are found for the high-statistics scenario.

18 citations


Journal ArticleDOI
TL;DR: In this article, a detailed multi-flavor analysis of sterile neutrino production is performed, making some justified approximations allowing us to consider not only neutrinos interactions with the primeval medium and Neutrino coherence breaking effects, but also oscillation effects arising from the presence of three light (mostly-active) neutRino states mixed with two heavier (mostlysterile) states.
Abstract: Light sterile neutrinos might mix with the active ones and be copiously produced in the early Universe. In the present paper, a detailed multi-flavor analysis of sterile neutrino production is performed. Making some justified approximations allows us to consider not only neutrino interactions with the primeval medium and neutrino coherence breaking effects, but also oscillation effects arising from the presence of three light (mostly-active) neutrino states mixed with two heavier (mostly-sterile) states. First, we emphasize the underlying physics via an analytical description of sterile neutrino abundances that is valid for cases with small mixing between active and sterile neutrinos. Then, we study in detail the phenomenology of (3+2) sterile neutrino models in light of short-baseline oscillation data, including the LSND and MiniBooNE results. Finally, by using the information provided by this analysis, we obtain the expected sterile neutrino cosmological abundances and then contrast them with the most recent available data from Cosmic Microwave Background and Large Scale Structure observations. We conclude that (3+2) models are significantly more disfavored by the internal inconsistencies between sterile neutrino interpretations of appearance and disappearance short-baseline data themselves, rather than by the used cosmological data.

11 citations


Journal ArticleDOI
TL;DR: Hadronic interactions of these neutrons inside a stellar wind bubble created by the progenitor star will produce TeV gamma rays via neutral meson decay and synchrotron radiation by charged pion-decay electrons in the wind magnetic field.
Abstract: Protons accelerated in the internal shocks of a long duration gamma ray burst can escape the fireball as cosmic rays by converting to neutrons. Hadronic interactions of these neutrons inside a stellar wind bubble created by the progenitor star will produce TeV gamma rays via neutral meson decay and synchrotron radiation by charged pion-decay electrons in the wind magnetic field. Such gamma rays should be observable from nearby gamma ray bursts by currently running and upcoming ground-based detectors.

2 citations


Posted Content
TL;DR: Hadronic interactions of these neutrons inside a stellar wind bubble created by the progenitor star will produce TeV gamma rays via neutral meson decay and synchrotron radiation by charged pion-decay electrons in the wind magnetic field.
Abstract: Cosmic ray protons accelerated in the internal shocks of a long duration gamma ray burst can escape the fireball by converting to neutrons. Hadronic interactions of these neutrons inside a stellar wind bubble created by the progenitor star will produce TeV gamma rays via neutral meson decay and synchrotron radiation by charged pion-decay electrons in the wind magnetic field. Such gamma rays may be observable from nearby gamma ray bursts by currently running and upcoming ground-based detectors.