scispace - formally typeset
Search or ask a question

Showing papers by "Piotr Faliszewski published in 2005"


Posted Content
TL;DR: A number of open problems from the theory of semifeasible algorithms are presented and their background is presented and what partial results, if any, are known are reviewed.
Abstract: The study of semifeasible algorithms was initiated by Selman's work a quarter of century ago [Sel79,Sel81,Sel82]. Informally put, this research stream studies the power of those sets L for which there is a deterministic (or in some cases, the function may belong to one of various nondeterministic function classes) polynomial-time function f such that when at least one of x and y belongs to L, then f(x,y) \in L \cap \{x,y\}. The intuition here is that it is saying: ``Regarding membership in L, if you put a gun to my head and forced me to bet on one of x or y as belonging to L, my money would be on f(x,y).'' In this article, we present a number of open problems from the theory of semifeasible algorithms. For each we present its background and review what partial results, if any, are known.

5 citations


Journal ArticleDOI
TL;DR: The advice complexity of the semifeasible sets was introduced by Karp and Lipton as discussed by the authors, which is a notion that contains aspects both of descriptional/informational complexity and of computational complexity.
Abstract: Informally put, the semifeasible sets are the class of sets having a polynomial-time algorithm that, given as input any two strings of which at least one belongs to the set, will choose one that does belong to the set. We provide a tutorial overview of the advice complexity of the semifeasible sets. No previous familiarity with either the semifeasible sets or advice complexity will be assumed, and when we include proofs we will try to make the material as accessible as possible via providing intuitive, informal presentations. Karp and Lipton introduced advice complexity about a quarter of a century ago.18 Advice complexity asks, for a given power of interpreter, how many bits of "help" suffice to accept a given set. Thus, this is a notion that contains aspects both of descriptional/informational complexity and of computational complexity. We will see that for some powers of interpreter the (worst-case) complexity of the semifeasible sets is known right down to the bit (and beyond), but that for the most central power of interpreter—deterministic polynomial time—the complexity is currently known only to be at least linear and at most quadratic. While overviewing the advice complexity of the semifeasible sets, we will stress also the issue of whether the functions at the core of semifeasibility—so-called selector functions—can without cost be chosen to possess such algebraic properties as commutativity and associativity. We will see that this is relevant, in ways both potential and actual, to the study of the advice complexity of the semifeasible sets.

4 citations


Book ChapterDOI
29 Aug 2005
TL;DR: If all PSPACE- complete languages are length-decreasing self-reducible then PSPACE = P and that if all NP-complete languages arelength-decreeasingSelf-reduced then NP = P, and the same type of result holds for many other natural complexity classes.
Abstract: Recently Glaser et al. have shown that for many classes C including PSPACE and NP it holds that all of its nontrivial many-one complete languages are autoreducible. This immediately raises the question of whether all many-one complete languages are Turing self-reducible for such classes C. This paper considers a simpler version of this question—whether all PSPACE-complete (NP-complete) languages are length-decreasing self-reducible. We show that if all PSPACE-complete languages are length-decreasing self-reducible then PSPACE = P and that if all NP-complete languages are length-decreasing self-reducible then NP = P. The same type of result holds for many other natural complexity classes. In particular, we show that (1) not all NL-complete sets are logspace length-decreasing self-reducible, (2) unconditionally not all PSPACE-complete languages are logpsace length-decreasing self-reducible, and (3) unconditionally not all PSPACE-complete languages are polynomial-time length-decreasing self-reducible.

4 citations


Journal ArticleDOI
TL;DR: It is shown that certain problems are uniformly hard, the uniformly hard analog of the Time Hierarchy Theorem is proved, and the properties of the polynomial hierarchy with respect to uniform hardness are explored.